Abstract:
A charge transimpedance amplifier (CTIA) input cell includes a high gain capacitor configured to integrate charge arising from photocurrent, a low gain capacitor, and a switching element that can switch the low gain capacitor to be electrically coupled in parallel to the high gain capacitor. In some examples, the switching element is a low gain switch, which can be manually activated to switch in the low gain capacitor. In these examples, the low gain switch can be electrically disposed between the low gain capacitor and a source of the photocurrent. In other examples, the switching element is a low gain transistor, which can be automatically activated to switch in the low gain capacitor when a voltage across the high gain capacitor reaches a specified threshold. In these examples, the low gain capacitor can be electrically disposed between the low gain transistor and the source of the photocurrent.
Abstract:
A TDI scanner including a dynamically programmable focal plane array including a two-dimensional array of detectors arranged in a plurality of columns and a plurality of rows, the array being divided into a plurality of banks separated from one another by gap regions, each bank including a plurality of sub-banks, and each sub-bank including at least one row of detectors, a ROIC coupled to the focal plane array and configured to combine in a TDI process outputs from detectors in each column of detectors in each sub-bank, and a controller configured to program the focal plane array to selectively and dynamically set characteristics of the focal plane array, the characteristics including a size and a location within the two-dimensional array of each of the plurality of sub-banks and the gap regions, the size corresponding to a number of rows of detectors included in the respective sub-bank or gap region.
Abstract:
A TDI scanner including a dynamically programmable focal plane array including a two-dimensional array of detectors arranged in a plurality of columns and a plurality of rows, the array being divided into a plurality of banks separated from one another by gap regions, each bank including a plurality of sub-banks, and each sub-bank including at least one row of detectors, a ROIC coupled to the focal plane array and configured to combine in a TDI process outputs from detectors in each column of detectors in each sub-bank, and a controller configured to program the focal plane array to selectively and dynamically set characteristics of the focal plane array, the characteristics including a size and a location within the two-dimensional array of each of the plurality of sub-banks and the gap regions, the size corresponding to a number of rows of detectors included in the respective sub-bank or gap region.
Abstract:
A system including a detector array configured to receive electromagnetic (EM) radiation from a target object, the detector array having one or more detectors is disclosed. The system also includes a readout integrated circuit and one or more processors. The readout integrated circuit has a circuit comprising a number of detector boundary selection components, each one of the number of detector boundary selection components configured to select or adjust a detector boundary from least one of a sub-column boundary or an adjustable boundary.
Abstract:
A system including a detector array configured to receive electromagnetic (EM) radiation from a target object, the detector array having one or more detectors is disclosed. The system also includes a readout integrated circuit and one or more processors. The readout integrated circuit has a circuit comprising a number of detector boundary selection components, each one of the number of detector boundary selection components configured to select or adjust a detector boundary from least one of a sub-column boundary or an adjustable boundary.
Abstract:
According to one aspect, embodiments herein provide a unit cell circuit comprising a photodetector configured to generate a photo-current in response to receiving light, a first integration capacitor configured to accumulate charge corresponding to the photo-current, a second integration capacitor configured to accumulate charge corresponding to the photo-current, a charge diverting switch coupled to the photodetector and configured to selectively couple the first integration capacitor to the second integration capacitor and divert the photo-current to the second integration capacitor in response to a voltage across the first integration capacitor exceeding a threshold level, and read-out circuitry coupled to the first integration capacitor and the charge diverting switch and configured to read-out a first voltage sample from the first integration capacitor corresponding to charge accumulated on the first integration capacitor and to read-out a second voltage sample from the second integration capacitor corresponding to charge accumulated on the second integration capacitor.
Abstract:
An analog counter circuit for use with a digital pixel includes: an input; an output; a first stage electrically coupled to the input that is charged to an initial charge voltage; a second stage that includes an accumulating charge storage device; and a charge transfer device between the first and second stages that includes a transfer voltage. The charge transfer device allows charge from the first stage to pass to the second stage and be accumulated on the accumulating charge storage device as long as a voltage at a node in the first stage is greater than the transfer voltage.
Abstract:
A digital pixel includes a capacitive transimpedence amplifier (CTIA) coupled to a photodiode that receives an electrical charge and output an integration voltage. An integration capacitor coupled to the CTIA accumulates the integration voltage over an integration period. A comparator compares the accumulated integration voltage with a threshold voltage and generates a control signal at a first level each time the accumulated integration voltage is greater than the threshold voltage. A charge subtraction circuit receives the control signal at the first level and discharges the accumulated integration voltage each time the control signal at the first level is received from the comparator. An analog or digital counter receives the control signal at the first level and adjusts a counter value each time the control signal is received from the comparator. An output interface communicates the counter value to an image processing circuit at an end of the integration period.
Abstract:
An imaging system includes a focal plane array comprising a first row of photodetectors, a second row of photodetectors adjacent to the first row of photodetectors, and a segmented isolation grid including portions disposed between photodetectors in the first row of photodetectors and photodetectors in the second row of photodetectors.
Abstract:
A system including a detector array configured to receive electromagnetic (EM) radiation from a target object, the detector array having one or more detectors is disclosed. The system also includes a readout integrated circuit and one or more processors. The readout integrated circuit has a circuit comprising a number of detector boundary selection components, each one of the number of detector boundary selection components configured to select or adjust a detector boundary from least one of a sub-column boundary or an adjustable boundary.