Abstract:
A solution for treating a fluid, such as water, is provided. An ultraviolet transparency of a fluid can be determined before or as the fluid enters a disinfection chamber. In the disinfection chamber, the fluid can be irradiated by ultraviolet radiation to harm microorganisms that may be present in the fluid. One or more attributes of the disinfection chamber, fluid flow, and/or ultraviolet radiation can be adjusted based on the transparency to provide more efficient irradiation and/or higher disinfection rates. In addition, various attributes of the disinfection chamber, such as the position of the inlet(s) and outlet(s), the shape of the disinfection chamber, and other attributes of the disinfection chamber can be utilized to create a turbulent flow of the fluid within the disinfection chamber to promote mixing and improve uniform ultraviolet exposure.
Abstract:
A solution for disinfecting a fluid, colloid, mixture, and/or the like using ultraviolet radiation is provided. An ultraviolet transparent enclosure can include an inlet and an outlet for a flow of media to be disinfected. The ultraviolet transparent enclosure includes a material that is configured to prevent biofouling within the ultraviolet transparent enclosure. A set of ultraviolet radiation sources are located adjacent to the ultraviolet transparent enclosure and are configured to generate ultraviolet radiation towards the ultraviolet transparent enclosure.
Abstract:
A solution for generating ultraviolet diffusive radiation is provided. A diffusive ultraviolet radiation illuminator includes at least one ultraviolet radiation source located within a reflective cavity that includes a plurality of surfaces. At least one of the plurality of surfaces can be configured to diffusively reflect at least 70% of the ultraviolet radiation and at least one of the plurality of surfaces can be configured to transmit at least 30% of the ultraviolet radiation and reflect at least 10% of the ultraviolet radiation.
Abstract:
A solution for packaging an optoelectronic device using an ultraviolet transparent polymer is provided. The ultraviolet transparent polymer material can be placed adjacent to the optoelectronic device and/or a device package on which the optoelectronic device is mounted. Subsequently, the ultraviolet transparent polymer material can be processed to cause the ultraviolet transparent polymer material to adhere to the optoelectronic device and/or the device package. The ultraviolet transparent polymer can be adhered in a manner that protects the optoelectronic device from the ambient environment.
Abstract:
Ultraviolet radiation is directed within an area at target wavelengths, target intensities, a target temporal distribution, and/or a target spatial distribution. The target attribute(s) of the ultraviolet radiation can correspond to at least one of a plurality of selectable operating configurations including a storage life preservation operating configuration, a disinfection operating configuration, an ethylene decomposition operating configuration, and/or the like.
Abstract:
Ultraviolet radiation is directed within an area. The storage area is scanned and monitored for the presence of biological activity within designated zones. Once biological activity is identified, ultraviolet radiation is directed to sterilize and disinfect designated zones within the storage area.
Abstract:
Ultraviolet radiation is directed within an area. Items located within the area and/or one or more conditions of the area are monitored over a period of time. Based on the monitoring, ultraviolet radiation sources are controlled by adjusting a direction, an intensity, a pattern, and/or a spectral power of the ultraviolet radiation generated by the ultraviolet radiation source. Adjustments to the ultraviolet radiation source(s) can correspond to one of a plurality of selectable operating configurations including a storage life preservation operating configuration, a disinfection operating configuration, and an ethylene decomposition operating configuration.
Abstract:
A solution for treating a fluid, such as water, is provided. An ultraviolet transparency of a fluid can be determined before or as the fluid enters a disinfection chamber. In the disinfection chamber, the fluid can be irradiated by ultraviolet radiation to harm microorganisms that may be present in the fluid. One or more attributes of the disinfection chamber, fluid flow, and/or ultraviolet radiation can be adjusted based on the transparency to provide more efficient irradiation and/or higher disinfection rates. In addition, various attributes of the disinfection chamber, such as the position of the inlet(s) and outlet(s), the shape of the disinfection chamber, and other attributes of the disinfection chamber can be utilized to create a turbulent flow of the fluid within the disinfection chamber to promote mixing and improve uniform ultraviolet exposure.
Abstract:
A solution for treating a fluid, such as water, is provided. An ultraviolet transparency of a fluid can be determined before or as the fluid enters a disinfection chamber. In the disinfection chamber, the fluid can be irradiated by ultraviolet radiation to harm microorganisms that may be present in the fluid. One or more attributes of the disinfection chamber, fluid flow, and/or ultraviolet radiation can be adjusted based on the transparency to provide more efficient irradiation and/or higher disinfection rates. In addition, various attributes of the disinfection chamber, such as the position of the inlet(s) and outlet(s), the shape of the disinfection chamber, and other attributes of the disinfection chamber can be utilized to create a turbulent flow of the fluid within the disinfection chamber to promote mixing and improve uniform ultraviolet exposure.
Abstract:
A solution for generating ultraviolet diffusive radiation is provided. A diffusive ultraviolet radiation illuminator includes at least one ultraviolet radiation source located within a reflective cavity that includes a plurality of surfaces. At least one of the plurality of surfaces can be configured to diffusively reflect at least 70% of the ultraviolet radiation and at least one of the plurality of surfaces can be configured to transmit at least 30% of the ultraviolet radiation and reflect at least 10% of the ultraviolet radiation.