Abstract:
A method for forming carbon nanotubes includes preparing a target object having a surface on which one or more openings are formed, each of the openings having a catalyst metal layer on a bottom thereof; performing an oxygen plasma process on the catalyst metal layers; and activating the surfaces of the catalyst metal layers by performing a hydrogen plasma process on the metal catalyst layers subjected to the oxygen plasma process. The method further includes filling carbon nanotubes in the openings on the target object by providing an electrode member having a plurality of through holes above the target object in a processing chamber, and then growing the carbon nanotubes by plasma CVD on the activated catalyst metal layer by diffusing active species in a plasma generated above the electrode member toward the target object through the through holes while applying a DC voltage to the electrode member.
Abstract:
A method of processing a substrate includes placing the substrate on a stage in a process container, supplying a plasma generating gas into the process container to generate plasma of first power at a first pressure, controlling an inside of the process container to a second pressure lower than the first pressure, and supplying a carbon-containing gas into the process container to form a graphene film on the substrate.
Abstract:
A substrate processing method of processing a substrate having a base film includes a loading process of loading the substrate into a processing container, a first process of performing a first plasma process in a state where the loaded substrate is held at a first position by raising substrate support pins of a stage arranged in the processing container, and a second process of performing a second plasma process while holding the substrate at a second position by lowering the substrate support pins.
Abstract:
A film forming method of forming a carbon film includes: cleaning an interior of a processing container by using oxygen-containing plasma in a state in which no substrate is present inside the processing container; subsequently, extracting and removing oxygen inside the processing container by using plasma in the state in which no substrate is present inside the processing container; and subsequently, loading a substrate into the processing container and forming the carbon film on the substrate through plasma CVD using a processing gas including a carbon-containing gas, wherein the cleaning, the extracting and removing the oxygen, and the forming the carbon film are repeatedly performed.
Abstract:
A film forming method includes: preparing a substrate that includes a base substrate and a first conductive film that is formed on the base substrate; forming, on the first conductive film, a composite layer that includes layers of graphene and includes, as dopant atoms, a transition metal from 4th period to 6th period in a periodic table, excluding lanthanoids, between the layers of graphene; and forming, on the composite layer, a second conductive film which is electrically connected to the first conductive film via the composite layer.
Abstract:
There is provided a method for producing graphene which includes a first growth step of supplying a carbon-containing gas into a chamber in which a metal catalyst is disposed to grow graphene on a surface of the metal catalyst, an activation step of supplying a process gas containing an oxygen gas or a hydrogen gas into the chamber in which the metal catalyst having the graphene grown on the surface thereof is disposed to reactivate the metal catalyst, and a second growth step of supplying the carbon-containing gas into the chamber in which the reactivated metal catalyst is disposed to regrow the graphene on the surface of the metal catalyst.
Abstract:
A carbon nanotube producing method, which is capable of realizing a low resistant depth-wise wiring. An acetylene gas is first supplied as a carbon-containing gas and subsequently, an ethylene gas is supplied as the carbon-containing gas such that carbon nanotubes are produced.
Abstract:
A graphene patterning method for forming a graphene of predetermined pattern includes bringing a patterning member in which a catalyst metal layer of the predetermined pattern is formed into contact with a substrate having a graphene oxide film. In bringing the patterning member, the catalyst metal layer is brought into contact with the graphene oxide film.
Abstract:
Provided is a method for growing carbon nanotubes that enables the growth of high-density carbon nanotubes. A high frequency bias voltage is applied to a loading table on which a wafer W having a catalytic metal layer is mounted to generate a bias potential on the surface of the wafer W, and oxygen plasma is used to micronize the catalytic metal layer to form catalytic metal particles. Thereafter, hydrogen plasma is used to reduce the surface of the catalytic metal particles to form activated catalytic metal particles having an activated surface. By using each activated catalytic metal particles as a nucleus, carbon nanotubes are formed.