Abstract:
Systems and methods are disclosed for non-invasively measuring blood glucose levels in a biological sample based on spectral data. This includes utilizing at least one light source configured to strike a target area of a sample, utilizing at least one light filter positioned to receive light transmitted through the target area of the sample from the at least one light source, utilizing at least one light detector positioned to receive light from the at least one light source and filtered by the at least one light filter, and to generate an output signal, having a time dependent current, which is indicative of the power of light detected, receiving the output signal from the at least one light detector with a processor, calculating the attenuance attributable to blood with a ratio factor based on the received output signal, and determining a blood glucose level based on the calculated attenuance.
Abstract:
Systems and methods are disclosed for non-invasively measuring blood glucose levels in a biological sample based on spectral data. This includes at least one light source configured to strike a target area of a sample, at least one light detector positioned to receive light from the at least one light source and to generate an output signal, having a time dependent current, which is indicative of the power of light detected, a processor configured to receive the output signal from the at least one light detector based on the received output signal, calculate the attenuance attributable to blood in a sample present in the target area with a ratio factor, eliminate effect of uncertainty caused by temperature dependent detector response of the at least one light detector, and then determine a blood glucose level with a sample present in target area based on the calculated attenuance with the processor.
Abstract:
A method of enhancing needle visualization in ultrasound imaging is provided. The method includes reducing overall gain in needle frames, and applying a nonlinear mapping to the needle frames, wherein the nonlinear mapping is configured to make strong signals stronger and make weak signals weaker after mapping.
Abstract:
Apparatus and methods for repairing silicon dangling bonds resulting from semiconductor processing are disclosed. The silicon dangling bonds can be repaired by introducing hydrogen radicals with substantially no hydrogen ions into the processing chamber to react with the silicon dangling bonds, eliminating them.
Abstract:
A Fourier Transfer Infrared (FTIR) spectrophotometer having reduced baseline noise. The system and method include internal or external optical adapters having a moveable beamsplitter for splitting the source light beam into a reference beam and a sample beam, and may include a variable bandpass filter, variable preamplifier and reversed biased photodiodes.
Abstract:
A flow controller for use with a liquid chromatography detector. The flow controller includes a flow channel comprising an inlet portion, a control channel portion in communication with the inlet portion, and an outlet portion in communication with said control channel portion. The control channel portion has a cross-sectional area smaller than a cross-sectional area of a drift tube of the liquid chromatography detector for channeling the flow of droplets through the smaller cross-sectional area. The flow controller is shaped and sized to reduce pressure fluctuations and turbulence in the droplet stream of the liquid chromatography detector
Abstract:
The invention relates to a non-invasive method to diagnose the changes of molecular structures of organism tissues from body surface and a dedicated apparatus. The apparatus is comprised of a Fourier Transform infrared spectrometer and a set of additional accessories. Said additional accessories include a mid-IR fiber optics sampling attachment, a fiber coupling part, and an infrared detector part. The detection method is comprised of placing the ATR probe of the dedicated apparatus on the skin surface of a region to be tested, and scanning more than one time in which the resolution of the apparatus is 1-32 cm−1 and the range of the spectrum is 800-4000 cm−1. It is possible to detect changes in molecular structures of living biological tissues in the early stages of cancer, and testees will not feel uncomfortable during testing. The method is easy to operate, quick, accurate, and it doesn't harm the body.
Abstract:
Increasing signal to noise ratio in optical spectra obtained by spectrophotometers. An interferometer introduces interference effects into a source light beam. A dual beam configuration splits the source beam having the interference effects into a reference beam and a sample beam. The reference beam interacts with a reference substance and is detected by a reference detector. The sample beam interacts with a sample substance and is detected by a sample detector. An optical spectra of the sample is based on the difference between the detected reference beam and the detected sample beam.
Abstract:
The present invention relates to an automatic chemistry analyzer comprising a reaction disk assembly (1), a sample and reagent disk assembly (2), a probe assembly (3) and a stirring assembly (4). A single probe (5) is used to dispense both the reagent and the sample into the reaction vessels. A pre-heating device disposed in the mechanical arm (6) for supporting the probe (5) pre-heats the reagent sucked into the probe to an appropriate temperature. The reaction vessels are disposable and may be replaced manually. The automatic chemistry analyzer may run single-reagent tests or double-reagent tests. According to the automatic chemistry analyzer of the present invention, the interval between injecting the first reagent of a test and injecting the sample of the same test may be 5.5 operation periods so that the first reagent in the reaction vessel may be maintained at or near an appropriate reaction temperature (37° C.). In a process of running a double-reagent test, the incubation time between injecting the sample and injecting the second reagent is set freely by the operator according to the requirements of the test. The automatic chemistry analyzer and the analyzing method according to the present invention may improve the test correctness.
Abstract:
Systems and methods are disclosed for non-invasively measuring blood glucose levels in a biological sample based on spectral data. This includes at least one light source configured to strike a target area of a sample, at least one light detector positioned to receive light from the at least one light source and to generate an output signal, having a time dependent current, which is indicative of the power of light detected, and a processor configured to receive the output signal from the at least one light detector and based on the received output signal, calculate the attenuance attributable to blood in a sample present in the target area and eliminate effect of uncertainty caused by temperature dependent detector response of the at least one light detector, and based on the calculated attenuance, determine a blood glucose level associated with a sample present in the target area.