Abstract:
In certain embodiments, a method of processing detonation nanodiamonds to fractionate the detonation nanodiamonds involves, in order forming a combination of detonation nanodiamonds and a solvent, said solvent containing at least approximately 10% DMSO (v/v), applying a dispersive technique to said combination, subjecting said combination to a procedure that causes nanodiamond particles of a first size range to be substantially spatially separated from nanodiamonds of a second size range, and collecting said nanodiamonds of said first size range essentially free of said second size range. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
Pluralities of ultrasonic transducers are arranged on the bottom wall of the cleaning tank. The output power of the ultrasonic oscillator is supplied to the transducers through the switching unit, which switches the drive mode between a first mode in which all the ultrasonic transducers are supplied with the output power and thus are excited, and a second mode in which only a part or parts of the ultrasonic transducers are supplied with the output power generated by the ultrasonic oscillator. The first mode is used when cleaning substrates not-resistant to vibration, and the second mode is used when cleaning substrates resistant to vibration.
Abstract:
Apparatus for the treatment of material comprises a confined volume for receiving the material, and a source of gas at elevated pressure communicable with the interior of the volume. A suitable source of gas is an airgun, or other apparatus capable of releasing a volume of gas at elevated pressure such as at least 1000 psi. It is preferred that the source of gas is located within the confined volume. It is also preferred that the confined volume is a pressure vessel. Inlet an outlet valves will assist in loading and unloading material for treatment. Gate valves will further assist by closing when the volume is full. The invention is thus particularly useful in the destruction of chemical and biological agents, for the purification of contaminated water, and for the destruction of tropical and other larvae previously leading to diseases such as Nile Disease, malaria and the like.
Abstract:
The present invention provides methods, devices and systems for increasing the energy of biologically active molecules in vitro or in vivo by utilizing electromagnetic energy, inductively-applied electromagnetic energy or magnetic energy. Such methods, devices and systems also can be used for inducing or accelerating the rate of a reaction by increasing energy of the reactants.
Abstract:
The present invention provides a method/device for enhancing a chemical reaction including PCR and ELISA by utilizing electromagnetic or mechanical energy. Such method/device can also be used for increasing the rate at which a group of molecules reaches a different molecular configuration from initial configuration, thereby increasing binding and reacting of the molecules.
Abstract:
The present invention provides a method/device for enhancing a chemical reaction including PCR and ELISA by utilizing electromagnetic or mechanical energy. Such method/device can also be used for increasing the rate at which a group of molecules reaches a different molecular configuration from initial configuration, thereby increasing binding and reacting of the molecules.
Abstract:
A waste destruction method using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.
Abstract:
The invention provides a liquid fueled pulsed detonation air breathing engine. The engine has at least one, and preferably a multiplicity of, detonation chambers, each of which has an inlet end for opening and receiving a charge of fuel and air, and an outlet end for discharging combustion product gases. A fast-acting valve is located above the inlet ends of the detonation chambers and cyclically opens the fuel and air receiving openings in the inlet ends of the detonation chambers to allow a fuel/air charge to enter the chambers. In a preferred embodiment, the valve is of a rotary type with a body that has at least one opening through which fuel and air can flow into the inlet end of the detonation chamber. Once the valve has closed, detonation is initiated by an ignitor and impulse force is provided by the resultant shock wave. Thereafter, the valve opens again so that the detonation chamber can be charged with fuel and air to recommence the cycle. The invention also provides an embodiment of an engine that has both inlet and outlet valves. These valves operate out of phase so that when the inlet valve is open to receive fuel and air into the detonation chamber, the outlet valve is closed. When detonation commences, the outlet valve is open and the inlet valve is closed. Optionally, a source of oxygen allows a stratified charge in the engine to enhance detonation. Also provided is a control system (48) for sensing the position of the valves, (58, 80) and using this sensed position to inject fuel, inject oxygen and ignite the fuel and air mixture.
Abstract:
A method and apparatus for fabricating high density monolithic metal and alloy billets. The process requires preheating precursor materials of metal or alloy billets by means of a combustion synthesis called Self-Propagating High-Temperature Synthesis (SHS). The reaction takes place in an insulated reaction vessel where the precursors, in a powder form, are heated to high temperatures. The precursors are then compacted to high density by means of pressure waves generated by detonation of an explosive. The method is capable of producing high purity tungsten and tungsten-based alloys of greater than 90% theoretical density.
Abstract:
Method and apparatus for compaction of powder of high density boron nitride, having an initial particle diameter of at least two microns, into a high density crystal aggregate of between 1 mm up to about 1 cm in diameter, the resulting crystal aggregate having a zincblende form, the wurtzite form or mixtures of the zincblende and wurtzite forms. High density aggregates of boron nitride, preferably having particle sizes with diameters at least 2 .mu.m, are placed in a hollow, substantially cylindrical first container of metal, and the first container is surrounded by a fluid-like material of metal or metal powder having a shock wave velocity V. The first container and fluid-like material are placed in a substantially cylindrical second container that is purged of substantially all air and sealed. The second container has a rigid side wall and two rigid end walls. A high explosive, having a detonation velocity D of at least 6 km/sec and preferably at least 8 km/sec, is positioned at one end wall and along at least a portion of the side wall of the second container. The high explosive is detonated, and an approximately radially directed pressure wave moves through the fluid-like material and the boron nitride powder toward the center of the second container. A second, approximately radially directed pressure wave, separated in time from the first pressure wave, subsequently moves outward through the fluid-like material and the boron nitride powder. These two pressure waves produce boron nitride aggregates of density at least 95 percent of the theoretical maximum density (3.49 gm/cm.sup.3) and of sizes at least 1 mm in diameter. A solid mandrel can be positioned near a center line of the second container to improve the quality of the resulting product. Grain sizes as small as 0.005-0.05 gm are produced. Boron nitride aggregates with Knoop hardness parameters in the range of 4300-5000 Kgm/mm.sup.2 can be produced in this manner.