Abstract:
A cartridge device is provided for applying a fiber matrix to a tubular member such as a saphenous vein graft. The cartridge includes a housing, a tubular member holder, a rotational drive, and a polymer delivery assembly. The housing defines a chamber which surrounds the tubular member holder. The rotational drive rotates the tubular member during the fiber application process.
Abstract:
A high dielectric contrast composition for particle formation that includes a high dielectric solvent, and a polymer dissolved into the high dielectric solvent. A method of forming particles including dissolving a polymer in a high dielectric solvent to form a high dielectric composition, and dielectrophoretically spinning the high dielectric composition in an electric field to form particles.
Abstract:
A cartridge device is provided for applying a fiber matrix to a tubular member such as a saphenous vein graft. The cartridge includes a housing, a tubular member holder, a rotational drive, and a polymer delivery assembly. The housing defines a chamber which surrounds the tubular member holder. The rotational drive rotates the tubular member during the fiber application process.
Abstract:
A method comprises introducing a fluid composition into one or more electrically insulating emitters, and applying voltage to the fluid to cause ejection of the solvent from the fluid after it exits the emitter. The fluid composition comprises first material having a dielectric constant greater than ˜25 and polymer mixed into liquid solvent having a dielectric constant less than ˜15, or polymer mixed into solvent having a dielectric constant greater than ˜8. Voltage can be applied to the fluid composition via a conductive electrode immersed in the fluid, or positioned outside and adjacent to the emitters. Conductivity of the fluid composition can be less than ˜100 μS/cm. A composition of matter comprises nanofibers formed by the method.
Abstract:
An apparatus and method for coating an organic film are disclosed. The apparatus comprises an evaporation device, an electron emission device and a spray device; wherein the evaporation device comprises an evaporation container, the evaporation container is a linear evaporation container, in which a uniform organic gas is generated; the electron emission device is horizontally arranged over the evaporation container such that the organic gas evaporated in the evaporation container is uniformly charged and becomes charged organic gas; the spray device is provided with an electric field, under which the charged organic gas is moved toward a substrate so as to deposit the organic film on the substrate.
Abstract:
A chamber (1) and an air conduit (7) connecting a liquid surface retaining hole (5) with an air hole (6) for supplying air from the outside of an electrostatic atomizer (50) to the chamber (1) are provided. When the liquid surface retaining hole (5) is blocked, the liquid supply from a liquid supplying section (3) to the chamber (1) will be stopped. The air conduit (7) has bent sections (8), and a space (10) for holding the liquid is formed in the air conduit (7).
Abstract:
An apparatus and method for coating an organic film are disclosed. The apparatus comprises an evaporation device, an electron emission device and a spray device; wherein the evaporation device comprises an evaporation container, the evaporation container is a linear evaporation container, in which a uniform organic gas is generated; the electron emission device is horizontally arranged over the evaporation container such that the organic gas evaporated in the evaporation container is uniformly charged and becomes charged organic gas; the spray device is provided with an electric field, under which the charged organic gas is moved toward a substrate so as to deposit the organic film on the substrate.
Abstract:
Purge method and apparatus for a manual spray gun or coating material application device, in which purge air is introduced into the device through a handgrip portion that is manually held during a coating operation. Purge air first enters the coating material flow path after the purge air enters the handgrip portion.
Abstract:
The present application discloses an active ingredient generator including a first discharger defining a discharge space in which a first discharge having first energy is generated; and a second discharger which causes a second discharge having second energy larger than the first energy in a passage space through which allows passage of fluid flowing from the discharge space. The second discharge may be a glow discharge.