Abstract:
A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 &mgr;m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.
Abstract:
A process for manufacturing a micromachine comprising a machine element supported on a substrate, comprising the steps of successively depositing on the substrate machine part layers and removable sacrificial layers made of an oxide ceramic material containing a rare earth, Ba, and Cu, and selectively removing the machine parts layer and the sacrificial layers so as to leave the machine element.
Abstract:
A platform includes first and second actuation layers. The first actuation layer includes first and second frames and a plurality of actuators connected between the first frame and the second frame, wherein the plurality of actuators are adapted to move the first and second frames with respect to each other in a first direction. The second actuation layer includes third and fourth frames and a plurality of actuators connected between the third frame and the fourth frame, wherein the plurality of actuators are adapted to move the third frame and the fourth frame with respect to each other in a second direction, different from the first direction. Thereby, the fourth frame of the second actuation layer and the second frame of the first actuation layer are mechanically connected to each other, such that the second actuation layer experiences the movement in the first direction induced by the first actuation layer.
Abstract:
Miniature camera modules that achieve autofocus (AF) and optical image stabilization (OIS) using piston-tube electrostatic actuators are disclosed. Various embodiments of the camera modules that work on two main mechanisms are disclosed. The two mechanisms are the whole barrel motion leading to AF and OIS and the single lens motion leading to AF. The MEMS actuator is integrated within a housing which is, in turn, coupled with an image sensor module. Autofocus is achieved by a translational motion of the piston-tube electrostatic actuator to translate the whole barrel back and forth. OIS is achieved by tilting the whole barrel using the tilting action of the piston-tube actuator.
Abstract:
Embodiments of the present disclosure are directed toward an apparatus with a rotatable MEMS device. The apparatus may include a magnetic circuit with two magnets disposed opposite each other to produce a magnetic field between the magnets. The MEMS device may be placed in a frame disposed between the magnets. The MEMS device may include a driving coil disposed around the device, and may be rotatable around a first axis of the frame, in response to application of electromagnetic force produced by interaction of electric current to pass through the driving coil, with the magnetic field. The frame may include another driving coil, and may be rotatable around a second axis orthogonal to first axis, in response to application of electromagnetic force produced by interaction of electric current to pass through the second driving coil, with the magnetic field. Other embodiments may be described and/or claimed.
Abstract:
A mechanical device includes a long, narrow element made of a rigid, elastic material. A rigid frame is configured to anchor at least one end of the element, which is attached to the frame, and to define a gap running longitudinally along the element between the beam and the frame, so that the element is free to move within the gap. A solid filler material, different from the rigid, elastic material, fills at least a part of the gap between the element and the frame so as to permit a first mode of movement of the element within the gap while inhibiting a different, second mode of movement.
Abstract:
A device for converting the kinetic energy of molecules into useful work includes an actuator configured to move within a fluid or gas due to collisions with the molecules of the fluid or gas. The actuator has dimensions that subject it to the Brownian motion of the surrounding molecules. The actuator utilizes objects having multiple surfaces where the different surfaces result in differing coefficients of restitution. The Brownian motion of surrounding molecules produce molecular impacts with the surfaces. Each surface then experiences relative differences in transferred energy from the kinetic collisions. The sum effect of the collisions produces net velocity in a desired direction. The controlled motion can be utilized in a variety of manners to perform work, such as generating electricity or transporting materials.
Abstract:
An apparatus used in a fuze device, which includes a MEMS micro-rotor. The micro-rotor of the apparatus may move an explosive material, for example, a fuze material, from an out-of-line position to an in-line position. The micro-rotor includes an integral cavity in which the material may be safely loaded and held in the out-of-line position. At an appropriate time, the fuze device of a fully assembled ordnance may be armed. When the apparatus is activated, the micro-rotor carefully moves the explosive material to the in-line position, where the ordnance is armed.
Abstract:
In one embodiment, a rotary device includes a multiwall nanotube that extends substantially perpendicularly from a substrate. A rotor may be coupled to an outer wall of the multiwall nanotube, be spaced apart from the substrate, and be free to rotate around an elongate axis of the multiwall nanotube.
Abstract:
A mechanical device includes a long, narrow element made of a rigid, elastic material. A rigid frame is configured to anchor at least one end of the element, which is attached to the frame, and to define a gap running longitudinally along the element between the beam and the frame, so that the element is free to move within the gap. A solid filler material, different from the rigid, elastic material, fills at least a part of the gap between the element and the frame so as to permit a first mode of movement of the element within the gap while inhibiting a different, second mode of movement.