Abstract:
The present invention includes a method for forming a pattern on a substrate with a composition by forming a cross-linked polymer from the composition upon exposing the same to radiation. The method includes depositing the composition to function as a planarization layer. Thereafter, a layer of polymerizable material into which a pattern is to be recorded is deposited.
Abstract:
A method for forming a free standing micro-structural member including providing a substrate; blanket depositing a first sacrificial resist layer over the substrate; exposing and developing the first sacrificial resist layer to form a first resist portion; subjecting the first resist portion to at least a hard bake process to form the first resist portion having a predetermined first smaller volume compared to a desired final resist portion volume; blanket depositing at least a second sacrificial resist layer followed by exposure, development and the at least a hard bake process to form the final resist portion volume; and, depositing at least one structural material layer over the final resist portion.
Abstract:
The present invention includes a composition and a method for forming a pattern on a substrate with the composition by forming a cross-linked polymer from the composition upon exposing the same to radiation. To that end, in one embodiment of the present invention the composition includes a non-silicon-containing acrylate component, and an initiator component combined with said non-silicon-containing acrylate to provide a viscosity no greater than 5 cps. The initiator component is responsive to radiation to initiate a free radical reaction and cause the non-silicon containing acrylate component to polymerize and cross-link. One embodiment of the non-silicon-containing acrylate component includes ethylene glycol diacrylate. The method includes depositing the composition to function as a planarization layer. Thereafter, a layer of polymerizable material into which a pattern is to be recorded is deposited.
Abstract:
A method is provided to prepare one or more microfluidic channels on a receptive material by applying an image-forming material to a heat sensitive thermoplastic receptive material in a designed pattern and heating the material under conditions that reduce the size of the thermoplastic receptive material by at least about 60%. In an alternative aspect, the microfluidic channels on receptive material are prepared by etching a designed pattern into a heat sensitive thermoplastic material support and then heating the material under conditions that reduce the size of the thermoplastic receptive material by at least about 60%.
Abstract:
There is provided a process for making a patterned metal oxide structure comprising the step of heating an imprint structure comprising a polymerized organometallic compound to remove organic material and thereby form the patterned metal oxide structure, wherein the imprint structure is formed by polymerizing a resist mixture comprising at least one olefinic polymerizable compound and a polymerizable organometallic compound having, e.g., at least one carboxylate of Formula 1: wherein n is 1-12; and each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloakyl, cycloakenyl, aryl, and aralkyl.
Abstract:
One object of the present invention is to provide a pattern transferring mold which can provide a starting area of mold release easily and certainly and a pattern transferring apparatus with the same. A pattern transferring mold is disclosed which is used in a pattern transferring apparatus that brings the mold into contact with a photo-curing resin on a substrate and cures the photo-curing resin by light irradiation to transfer a pattern formed on the mold onto the photo-curing resin. The mold comprises a bottom face which contacts the photo-curing resin, the bottom face portion including a first area in which the pattern is formed and a second area formed outside the first area. The mold has a mold-releasing shape in the second area, the mold-releasing shape providing a starting area of mold release from the cured photo-curing resin.
Abstract:
One object of the present invention is to provide a pattern transferring mold which can provide a starting area of mold release easily and certainly and a pattern transferring apparatus with the same. A pattern transferring mold is disclosed which is used in a pattern transferring apparatus that brings the mold into contact with a photo-curing resin on a substrate and cures the photo-curing resin by light irradiation to transfer a pattern formed on the mold onto the photo-curing resin. The mold comprises a bottom face which contacts the photo-curing resin, the bottom face portion including a first area in which the pattern is formed and a second area formed outside the first area. The mold has a mold-releasing shape in the second area, the mold-releasing shape providing a starting area of mold release from the cured photo-curing resin.
Abstract:
A method for fabricating optical MEMS (optical Micro-Electro-Mechanical Systems or Micro-Opto-Electro-Mechanical Systems (MOEMS)) is described. The basic process involves deposition and patterning of a sacrificial spacer layer and a combined moulding and photolithography step. The method described allows the fabrication of micromechanical elements incorporating micro-optical structures such as lenses (diffractive or refractive), gratings (for polarisers or resonant filters), waveguides or other micro-optical relief structures fabricated by UV-curing replication processes.
Abstract:
A multilayer resist structure is irradiated more than one time with ultraviolet rays through a photomask. Each time the structure is irradiated, ultraviolet rays of a little greater quantity of light than those used in the last irradiation are used. Also, with each exposure, a photomask which has a larger lightproof section than that used in the last irradiation is used. Next, the multilayer resist structure is developed, and the exposed area of each photoresist is removed with a developing solution. Also, in amorphous silicon layers, the areas under the removed photoresist are easily removed with the developing solution. A resist structure having desired steps is thus completed. Using the resist structure, a three-dimensional microstructure can be formed.