Abstract:
A water treatment system is disclosed having electrolytic cell for liberating hydrogen from a base solution. The base solution may be a solution of brine for generating sodium hypochlorite, or potable water to be oxidized. The cell has first and second opposing electrode endplates held apart from each other by a pair of supports such that the supports enclose opposing sides of the endplates to form a cell chamber. One or more inner electrode plates are spaced apart from each other in the cell chamber in between the first and second electrode plates. The supports are configured to electrically isolate the first and second electrode plates and the inner electrode plates from each other. The first and second electrode plates are configured to receive opposite polarity charges that passively charge the inner electrode plates via conduction from the base solution to form a chemical reaction in the base solution as the base solution passes through the cell chamber.
Abstract:
According to one embodiment, an electrolytic membrane separation (EMS) subsystem is configured to remove one or more impurities from a contaminated reject solution and to recycle the reusable reject solution for subsequent use in regenerating ion exchange resins. According to another embodiment of the invention, the EMS subsystem is configured to concentrate the impurities recovered from the contaminated brine solution for subsequent disposal or treatment.
Abstract:
An apparatus for electrochemical modification of liquid streams employing an electrolytic cell which includes an anode compartment defined by an anode structure where oxidation is effected, containing a liquid electrolyte anolyte, and a cathode compartment defined by a cathode structure where reduction is effected containing a liquid electrolyte catholyte. In addition, the electrolytic cell includes at least one additional compartment arranged at least partially between the anode compartment and the cathode compartment and separated from the anode compartment and the cathode compartment by a separator structure arranged to supports ionic conduction of current between the anode structure and the cathode structure.
Abstract:
A low-voltage, low-energy electrochemical system and method of removing protons and/or producing a base solution using a gas diffusion anode and a cathode electrolyte comprising dissolved carbon dioxide, while applying 2V or less across the anode and cathode.
Abstract:
A treatment method of organic compounds included in waste water, comprising the steps of: supplying waste water to an adsorber 2 filled with an adsorbent 3 therein for adsorbing the organic compounds in the waste water by the adsorbent 3 in the adsorber 2, supplying a current between an anode 9 and a cathode 8 in water including an electrolyte in an electrolyzer 6 for electrolyzing the water including an electrolyte, and supplying an electrolyte resulting from electrolysis in the electrolyzer 6 to the adsorbent 3 in the adsorber 2 for contacting the electrolyte with the adsorbent 3, so that the organic compounds adsorbed by the adsorbent 3 are desorbed or decomposed.
Abstract:
An efficient system for desalinization of water is described wherein multiple stages of deionization result in drinking water quality and provision is made for recycling wastewater through the system.
Abstract:
A system using electrochemically-activated water (ECAW) for manufacturing, processing, packaging, and dispensing beverages including: (a) using ECAW to neutralize incompatible residues when transitioning from the production of one beverage to another; (b) using ECAW to rehabilitate and disinfect granular activated charcoal beds used in the feed water purification system; (c) producing a carbonated ECAW product and using the carbonated ECAW for system cleaning or disinfecting; (d) using ECAW solutions in the beverage facility clean-in-place system to achieve improved microbial control while greatly reducing water usage and reducing or eliminating the use of chemical detergents and disinfectants; (e) further reducing biofilm growth in the processing system, and purifying ingredient water without the use of chlorine, by adding an ECAW anolyte to the water ingredient feed stream; and/or (f) washing the beverage product bottles or other packages with one or more ECAW solutions prior to packaging.
Abstract:
A medicated electrochemical oxidation process is used for sterilization/disinfection of contaminated instruments and infectious waste. Contaminated instruments and waste are introduced into an apparatus for contacting the infectious waste with an electrolyte containing the oxidized form of one or more reversible redox couples, at least one of which is produced at the anode of an electrochemical cell. The oxidized species of the redox couples oxidize the infectious waste molecules and are themselves converted to their reduced form, whereupon they are reoxidized by either of the aforementioned mechanisms and the redox cycle continues until all oxidizable infectious waste species have undergone the desired degree of oxidation. The entire process takes place at temperatures between ambient and approximately 100 degree celsius. The oxidation process will be enhanced by the addition of reaction of reaction enhancements, such as: ultrasonic energy and/or ultraviolet radiation.
Abstract:
A mediated electrochemical oxidation process is used to treat, oxidize and destroy food waste materials, such as manure, biological residue, hay, straw, animal byproducts, bones, horns, blood, biological items, pathological waste and combined waste. Food waste is introduced into an apparatus for contacting the waste with an electrolyte containing the oxidized form of one or more reversible redox couples, at least one of which is produced by anodic oxidation in an electrochemical cell. The oxidized species of the redox couples oxidize the organic waste molecules and are themselves converted to their reduced form, whereupon they are reoxidized by either of the aforementioned mechanisms and the redox cycle continues until all oxidizable waste species, including intermediate reaction products, have undergone the desired degree of oxidation. The process takes place at temperatures between zero degrees centigrade and below the boiling point of the electrolyte.
Abstract:
A mediated electrochemical oxidation process is used to treat, oxidize and destroy halogenated hydrocarbon waste materials. The waste materials are introduced into an apparatus for contacting with an electrolyte containing the oxidized form of one or more reversible redox couples, at least one of which is produced electrochemically by anodic oxidation at the anode of an electrochemical cell. The oxidized forms of any other redox couples present are produced either by similar anodic oxidation or reaction with the oxidized form of other redox couples present and capable of affecting the required redox reaction. The oxidized species of the redox couples oxidize the halogenated hydrocarbon waste molecules and are themselves converted to their reduced form, whereupon they are reoxidized by either of the aforementioned mechanisms and the redox cycle continues until all oxidizable waste species, including intermediate reaction products, have undergone the desired degree of oxidation.