Abstract:
This application relates to microporous, open-celled polymeric foam materials with physical characteristics that make them suitable for a variety of uses produced from high internal phase emulsions (HIPEs). This application particularly relates to oxidatively stable emulsifiers used to stabilize the HIPE and the foams produced from such HIPEs.
Abstract:
Described are implements made from a durable HIPE foam material. The HIPE foam has a Toughness Index of at least 75 where the Toughness Index relates properties related to durability (e.g., density, tan[&dgr;] height, glass transition temperature, and abrasion resistance) into a single composite descriptor thereof. Exemplary implements include: wipes, toys, stamps, art media, targets, food preparation implements, plant care implements, and medical wraps.
Abstract:
The invention comprises a fully continuous process for shaping a high internal phase emulsion (HIPE) with a polymerizable continuous phase into dry foam, comprising 1) providing a high internal phase emulsion (HIPE) comprising (a) at least 70 percent by volume of an eternal phase comprising one or more polymerizable monomer; (b) a surfactant in an amount effective to produce a high internal phase emulsion; and (c) an internal phase; 20 depositing the emulsion onto a lower moving support substrate; 3) leveling the emulsion to a desired thickness above the support substrate; 4) polymerizing the monomers by running the emulsion and the lower moving support substrate through a heating zone for a time sufficient to polymerize at least 75% of the monomer in the HIPE by the end of the heating zone; and 5) drying the polymerized HIPE in a drying zone for a time sufficient to produce a foam having greater than 50% of the internal phase removed.
Abstract:
This application relates to flexible, microporous, open-celled polymeric foam materials with physical characteristics that make them suitable for a variety of uses. This application particularly relates to high temperature processes having short curing times for preparing such foam materials from high internal phase emulsions.
Abstract:
The present invention relates to a HIPE-derived heterogeneous polymeric foam structure of interconnected open-cells, wherein the foam structure has at least two distinct regions. Such heterogeneous foams have various applications, such as energy and fluid absorption, insulation, and filtration.The invention further relates to a heterogeneous absorbent polymeric foam that, upon contact with aqueous fluids (in particular body fluids such as urine and blood), can acquire, distribute, and store these fluids.The foams of the invention have at least two distinct regions having different density, polymer composition, surface properties, and/or microcellular morphology.The invention further relates to a process for obtaining the heterogeneous foams by polymerizing a high internal phase water-in-oil emulsion, or HIPE. In one aspect, the process utilizes at least two distinct HIPEs, with each emulsion having a relatively small amount of an oil phase and a relatively greater amount of a water phase.
Abstract:
Stable high internal phase water-in-oil emulsions containing polymerizable vinyl monomers, crosslinking monomers and initiators, useful in preparing low density porous crosslinked polymeric foams, are obtained by using a surfactant system containing (a) one or more sorbitan fatty acid ester or saccharide fatty acid ester and (b) a glycerol monofatty acid ester. A higher water to oil ratio water-in-oil emulsions can be formed with the same formulation by using the glycerol monofatty acid ester cosurfactant.
Abstract:
Provided is a superabsorbent structure based on a covalently crosslinked copolymer having a microstructure of a HIPE, and characterized by hydrophobic and hydrophilic segments of at least five residues; the unique chemical and structural properties of the copolymer afford a polymeric superabsorbent structure that is capable of swelling in polar as well as apolar media. Also provided are processes of manufacturing the superabsorbent structure, and uses thereof.
Abstract:
Provided herein is a superabsorbent polyHIPE composition-of-matter comprising a majority of ionizable pendant groups, capable of absorbing up to 300-fold by mass water while exhibiting a notable mechanical strength in both the dry and wet form, as well as various uses thereof.
Abstract:
A method for continuous High Internal Phase Emulsion (HIPE) foam production. A HIPE is produced then extruded onto a belt. After polymerization, a portion of the saturated aqueous phase is removed using a vacuum box. A nip insert is inserted under the vacuum box to raise the vacuum box leading to improved uniformity of the HIPE in the cross direction along the belt.
Abstract:
A method for continuous High Internal Phase Emulsion (HIPE) foam production. A HIPE is produced then extruded onto a belt. After polymerization, a portion of the saturated aqueous phase is removed using a vacuum box. A nip insert is inserted under the vacuum box to raise the vacuum box leading to improved uniformity of the HIPE in the cross direction along the belt.