Abstract:
Solid combustible waste materials are converted into highly efficient fuel by subjecting such materials to size reduction in suitable size-reducing equipment. The last piece of the equipment is a mill which pulverizes the waste materials into fine particles having a high surface to mass ratio and forming a highly efficient fuel when these particles are directly injected into a combustion reactor operating at high temperature.
Abstract:
Solid combustible waste materials are converted into highly efficient fuel by subjecting such materials to size reduction in suitable size-reducing equipment. The last piece of the equipment is a mill which pulverizes the waste materials into fine particles having a high surface to mass ratio and forming a highly efficient fuel when these particles are directly injected into a combustion reactor operating at high temperature.
Abstract:
A method of disposing of combustible materials. The method includes the steps of: providing a heating space; providing a first source to generate heat to a first predetermined level at a first location in the heating space sufficient to reconstitute the combustible materials to a molten slag at the first location and so that heat generated by the first source elevates the temperature at a second location within the heating space to a second predetermined heat level that is below the predetermined heat level and high enough to cause combustion of the combustible materials; directing combustible materials to the second location at which the combustible materials are combusted to produce ash; and causing the ash to be directed to the first location to be reconstituted as molten slag.
Abstract:
A fuel being primarily a liquid fuel is ejected through a fuel ejection pipe having an annular ejection opening; primary air is ejected through primary air-ejecting openings arranged on outer and inner sides of the fuel ejection opening, to form outer and inner primary air-ejection straight stream openings between which the fuel ejection stream is interposed, and to burn the fuel ejection stream. The fuel-spraying openings are arranged on the same circumference. The outer and inner primary air-ejecting openings, respectively, are each arranged on a respective concentric circumference having a center point identical to the center of the circumference on which the fuel-spraying openings are arranged. When a power fuel is used, optionally a liquid fuel is further ejected and mixed with the primary air stream, and the liquid and power fuels are burnt together.
Abstract:
A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.
Abstract:
The invention provides a process and apparatus for producing hydrocarbons from residential trash or waste and/or organic waste materials. In particular, the invention provides a process and apparatus for producing hydrocarbons from residential trash or waste and/or organic waste materials in virtue of pyrolysis and catalytic cracking.
Abstract:
A fuel selected from powder fuels and liquid fuel is ejected through a fuel ejection means; primary air is ejected through primary air-ejecting means arranged on outer and inner sides of the fuel ejection means, to form outer and inner primary air-ejection straight streams between which the fuel ejection stream is interposed, and to burn the fuel ejection stream. When a powder fuel is used, optionally, a liquid fuel is further ejected and mixed with the above-mentioned primary air streams, and the liquid and powder fuels are burnt together.
Abstract:
The invention concerns a plant for the thermolysis of waste products containing an organic fraction, and for simultaneous energetically upgrading these waste products comprising: a unit for loading and supplying the waste products to be treated; a thermolysis reactor for thermal dissociation under reduced pressure at high temperature. The invention is characterized in that it comprises: upstream and downstream of the reactor, a lock chamber for maintaining a partial vacuum in the reactor for ensuring thermolysis in an atmosphere with low oxygen content; first means for recuperating, in the upper part of the reactor, the organic gas fraction formed during thermolysis, and for bringing this fraction to a combustion chamber supplying a steam generator; second means for recuperating at the bottom of the reactor the solid carbon products formed during thermolysis, and for bringing these solid products to a combustion chamber supplying a steam generator or an evacuating system. The gas of the combustion chamber and the steam produced by the steam generator, in turn supply the unit producing the waste products and/or means for drying in advance of the waste products provided just upstream of the reactor.
Abstract:
An in-line grinder has been developed which can be configured to perform in a variety of applications through the use of an adjustable rotor/stator assembly, removable shear bar, and a variety of interchangeable stator-rotor configurations. A unique drive system utilizing a mechanical seal cartridge provides maximum sealing with a minimum of shaft deflection and run-out, thereby improving performance. These improvements collectively allow the grinder to be configured for optimum sizing of solids to a predetermined particle size for a broad range of materials. It has been demonstrated that a class of in-line grinders such as that described herein is applicable for sizing drill cuttings for injection into a subsurface formation by way of an annular space formed in a wellbore. The cuttings are removed from the drilling fluid, conveyed to a shearing and grinding system that converts the cuttings into a viscous slurry with the addition of water and viscosity enhancing polymers. The system in its simplest form comprises a slurry tank, a pump, and the instant in-line grinder. The pump circulates the mixture of cuttings, water including sea water and chemicals between the slurry tank and the in-line grinder. The ground mixture leaving the in-line grinder is then routed to an injection pump for high pressure injection into the formation.
Abstract:
The method of an apparatus for incinerating and melting wastes along with incombustible materials in the wastes which comprise introducing wastes in a horizontal rotary furnace, incinerating the wastes at a temperature from 800.degree. C. to 1,200.degree. C., and melting the ashes of the wastes together with the remaining products which are vitrified at a temperature of more than 1,600.degree. C., by an oxygen type burner in which an oxygen-fuel mixture has an oxygen content of 50% in the mixture. The exhaust gas generated in the incineration and melting processes is introduced to a dust collector for cleaning the exhaust gas.