Abstract:
The present invention relates to an apparatus that uses shadow images of cells to continuously measure cell activity at a high processing rate in order to provide cell activity and cell number results. According to one embodiment of the present invention, instead of a highly experienced examiner or technician using a microscope, ELISA reader, etc. having to collect various cell activity measurements and cell numbers, the collection of said information can be automated so as to reduce cost and largely reduce errors in measurements through the development of computer software coupled with hardware using low cost and compact optoelectronic components and simple image processing techniques.
Abstract:
An image sensor having a plurality of photoelectric conversion elements that receive light and convert the light to electric charges, color filter layers having different spectral characteristics, each being provided corresponding to each of the photoelectric conversion elements, and a partition wall having a lower refractive index than that of the color filter layers provided at the boundary of each color filter layer. The image sensor is formed such that a space of the partition wall on the light exit side is narrower than a space of the partition wall on the light incident side.
Abstract:
An optical power monitoring device includes a photodetector disposed in close proximity to the cladding of an optical fiber for measuring Rayleigh scattered light from the core of the optical fiber. To ensure only Rayleigh scattered light is measured, a cladding stripper is provided to remove any cladding light prior taking a reading with the photodetector.
Abstract:
A blade tracking system including a detector having one or more sensors to detect radiation from at least one field of view of the detector, the one or more sensors generating signals based on changes in incident radiation to the one or more sensors as a rotor blade passes the field of view, and a processor to determine a pass time for the rotor blade to pass through the at least one field of view based on the generated signals.
Abstract:
A calibration system for a detector includes a base member, a plurality of radiation sources fixedly attached to the base member, and a positioning mechanism attached to the base member. Each radiation source is maintained at a different temperature and is configured to emit electromagnetic radiation. The positioning mechanism includes a movable member having a single degree of freedom with respect to the base member, and a plurality of optical elements arranged on the movable member. Each optical element corresponds to one of the radiation sources and each optical element is configured to at least be movable between a calibration position and a non-calibration position. When the optical element is in the calibration position, the optical element is configured to receive the electromagnetic radiation from its corresponding radiation source and to reflect the electromagnetic radiation to a detector.
Abstract:
Provided are an integrating sphere photometer and a measuring method of the same. The integrating sphere photometer includes an integrating sphere including a left hemisphere and a right hemisphere, a photometer disposed on the center surface of the right hemisphere, a photometer baffle disposed in front of the photometer to be spaced apart therefrom, a light source to be tested disposed at the center region of the integrating sphere to illuminate light to at least an illumination region of the left hemisphere, an auxiliary lamp part disposed in the vicinity of a contact region between the left hemisphere and the right hemisphere to illuminate light to the illumination region, and an auxiliary lamp baffle disposed around the auxiliary lamp part to prevent the light emitted from the light source to be tested from being directly illuminated to the auxiliary lamp part and also to prevent the light emitted from the auxiliary lamp part from being directly illuminated to the light source to be tested.
Abstract:
In order to reduce the exposure of a detector surface 180 of a photo-multiplier 160 to stray charged particles, an off-axis structure is interposed between the resonant structure and the detector surface of the photo-multiplier. By providing the off-axis structure with at least one reflective surface, photons are reflected toward the detector surface of the photo-multiplier while at the same time absorbing stray charged particles. Stray particles may be absorbed by the reflective surface or by any other part of the off-axis structure. The off-axis structure may additionally be provided with an electrical bias and/or an absorbing coating for absorbing stray charged particles.
Abstract:
The present invention provides an instrument and method for measuring total luminous flux of luminous elements, which forms an approximately uniform spatial intensity distribution by simultaneously lighting a plurality of luminous elements for measurement in an integrating sphere when comparing a total luminous flux standard lamp with the luminous elements to measure the total luminous flux of the luminous elements, thus not requiring spatial mismatch error correction.
Abstract:
Disclosed herein is reference component for a sensor. The reference component comprises a calibration surface and an integrated circuit. The integrated circuit often contains a digital representation of calibration surface properties. A corresponding sensing system, printing system, method of communicating calibration data, and sensor calibration method also are disclosed.
Abstract:
A sensitive photon detection system generates an electronic photon sensor signal as a K factor times a number N photons per unit time. The system is configured by combining a separate optical amplifier with a gain factor K1 with a photo detector with a gain factor K2 such that K may be realized as the product of K1 and K2. The values of K1 and K2 are chosen to meet a predetermined K while optimizing a signal quality of the photon sensor signal. The optical amplifier may be preceded by a photon gathering device and/or a light chopping device to further optimize system performance. Further, the photon sensor signal may be further processed analog circuitry or may be digitized and processed using digital signal processing to generate an enhanced photon sensor signal with enhanced signal quality by adding gain and/or bandwidth limiting.