Abstract:
First, monochromatic near infrared light in a wavelength range of 700 nm-1100 nm from the slit of the near infrared apparatus 1 is applied to a reference ceramic plate through the optical fiber 7 to measure a transmitted light intensity of the ceramic plate which is a reference material for spectrum measurement. Next, in place of the ceramic plate, the test tube 4 containing a liquid sample of which the temperature has been adjusted at a predetermined temperature by a water bath and the like is inserted into the housing portion 5. The transmitted light intensity of the liquid sample is then measured using the same procedure as above. A so-called near infrared absorption spectrum in which absorbance has been plotted against wavelengths is displayed on the screen of the computer 2. Information about each object characteristic is extracted from the spectrum data using a calibration equation.
Abstract:
A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.
Abstract:
A smoke detector includes: a casing; a first light emitting unit; a second light emitting unit; and a light receiving unit. A second scattering angle that is an angle between the reception axis of the light receiving unit and a second extension extending from an intersection of the second emission axis and the reception axis in a direction away from the second light emitting unit is larger than a first scattering angle that is an angle between the reception axis of the light receiving unit and a first extension extending from an intersection of the first emission axis and the reception axis in a direction away from the first light emitting unit.
Abstract:
The present disclosure describes an apparatus of measuring light scattering of a sample. In an embodiment, the apparatus includes (1) at least one display logically coupled to an enclosure housing a light scattering measurement instrument, where the at least one display is configured to allow for operating the instrument to acquire light scattering data from the sample and for accessing the data, (2) an indicator connected to an outside surface of the enclosure, where the indicator is configured to indicate at least one status of the instrument, (3) a sample chamber configured to accommodate at least one sample cell, where each of the at least one sample cell has a unique size and a unique shape, and (4) and a sample door connected to the enclosure, where the sample door is configured to seal the sample chamber, thereby providing thermal insulation to the sample chamber.
Abstract:
A SERS unit comprises a substrate; an optical function part formed on the substrate, for generating surface-enhanced Raman scattering; and a package containing the optical function part in an inert space and configured to irreversibly expose the space.
Abstract:
The invention provides an apparatus and a method that reduces fluid loss from a cask during a maturation process by sealably enclosing the cask in a vessel that provides an expansion volume to receive fluid vapor from the cask, a monitoring system and a method that monitors fluid loss from a cask during a maturation process using a light source and a detector to determine the presence of fluid vapor in the vicinity of the cask, a corresponding system for controlling a maturation process in which environmental conditions are controlled, and a cask leak testing system and method making use of the above.
Abstract:
A fitting for positioning a probe in a hot gas path within a casing of a gas turbine engine is disclosed herein. The fitting may include a main body attachable to the casing opposite the hot gas path. The main body may include an internal bore and one or more cooling holes in communication with the internal bore. A compliant seal may be positionable within the internal bore. In addition, a follower may be positionable within the internal bore adjacent to the compliant seal. Moreover, the fitting may include a fastener configured to mate with the main body. In this manner, the follower may deform the compliant seal about the probe within the main body to secure and seal the probe within the main body.
Abstract:
A SERS unit comprises a substrate; an optical function part formed on the substrate, for generating surface-enhanced Raman scattering; and a package containing the optical function part in an inert space and configured to irreversibly expose the space.
Abstract:
An analytical instrument suitable for a use in a variety of industrial environments features a housing having a sealed primary chamber filled with a dry, inert gas at a first static pressure. An instrumentation system is disposed within the primary chamber, where fire hazard is eliminated by the inert gas. The housing additionally includes a reference chamber holding a gas a second pressure lower than the first pressure. One or more pressure switches, in pressure-sensing relationship with both chambers, is operative to interrupt the application of power to the instrumentation system if the differential between first and second pressures falls below a predetermined value. In this manner, the instrumentation system is rendered safe whenever the primary chamber is breached or otherwise loses inert gas pressure.
Abstract:
A method of protecting a sensor for use in an environment, includes providing a protective enclosure formed in a plurality of sections, at least a first section of the plurality of sections being movable relative to a second section of the plurality of sections so that the protective enclosure can be placed around at least a portion of the sensor; placing the first section adjacent the sensor while the first section and the second section are in an open state; and moving the second section to place the first section and the second section in a closed state in which the first section and the second section encompass the at least a portion of the sensor.