Abstract:
A method and an apparatus for reducing a read latency are provided. The method includes: when one or more flash chips corresponding to a read command are in a busy state, setting data read from the one or more flash chips in a busy state to wrong data; obtaining, according to the wrong data and data read from other flash chips, reconstructed correct data, and reporting the correct data. By using the present invention, data read from a flash chip is set to wrong data, and reconstructed correct data is obtained according to the wrong data and data read from other flash chips. In this way, when the flash chip is in a busy state, it can be avoided that a read operation is blocked by an erase operation or a write operation, thereby effectively reducing latency and improving a performance of a storage system.
Abstract:
A method for managing processing power in a storage system is provided. The method includes providing a plurality of blades, each of a first subset having a storage node and storage memory, and each of a second, differing subset having a compute-only node. The method includes distributing authorities across the plurality of blades, to a plurality of nodes including at least one compute-only node, wherein each authority has ownership of a range of user data.
Abstract:
Embodiments of the invention relate to faulty recovery mechanisms for a three-dimensional (3-D) network on a processor array. One embodiment comprises a multidimensional switch network for a processor array. The switch network comprises multiple switches for routing packets between multiple core circuits of the processor array. The switches are organized into multiple planes. The switch network further comprises a redundant plane including multiple redundant switches. Multiple data paths interconnect the switches. The redundant plane is used to facilitate full operation of the processor array in the event of one or more component failures.
Abstract:
An information handling system and method allows implementation of fault-tolerant storage subsystems using multiple storage controllers not themselves originally designed to support the redundancy of such fault-tolerant storage subsystems. In accordance with one embodiment, uncommitted data is efficiently and rapidly replicated across multiple commodity storage controllers, enabling faster and less expensive fault-tolerant storage subsystems. A redundant storage controller system using non-redundant storage controllers can improve the efficiency of data replication while providing failure protection against controller failure. A redundant storage controller system using non-redundant storage controllers and shared memory commonly accessible to the storage controllers can be enhanced to replicate data within host memory regions to protect against non-volatile memory failure. In accordance with at least one embodiment, an efficient data replication mechanism can be provided between storage controllers using off-the-shelf hardware.
Abstract:
Avoiding encryption of certain blocks in a deduplication vault. In one example embodiment, a method of avoiding encryption of certain blocks during a backup of a source storage into a deduplication vault storage may include analyzing each allocated plain text block stored in a source storage at a point in time to determine if the allocated plain text block is already stored in the deduplication vault storage. If the allocated plain text block is not stored in the deduplication vault storage, the block may be encrypted and the encrypted block may be analyzed to determine if the encrypted block is already stored in the deduplication vault storage. If neither the allocated plain text block nor the encrypted block is already stored in the deduplication vault storage, the encrypted block may be stored in the deduplication vault storage.
Abstract:
A plurality of storage nodes in a single chassis is provided. The plurality of storage nodes in the single chassis is configured to communicate together as a storage cluster. Each of the plurality of storage nodes includes nonvolatile solid-state memory for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of two of the plurality of storage nodes. A plurality of compute nodes is included in the single chassis, each of the plurality of compute nodes is configured to communicate with the plurality of storage nodes. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.
Abstract:
An electronic control unit for controlling and/or regulating at least one motor vehicle includes at least one integrated microcontroller system for executing software and at least two microcontroller units that each executes at least one independent operating system. The at least one interface is provided for the purpose of interchanging information between the microcontroller units. The electronic control unit includes a first microcontroller unit configured to control and/or regulate of a first motor vehicle system, and a second microcontroller unit configured to use the interface of the first microcontroller unit to provide defaults for the control and/or regulation of the first motor vehicle system
Abstract:
Method and apparatus for dynamic Node healing in a Multi-Node environment. A multi-node platform controller hub (MN-PCH) is configured to support multiple nodes through use of dedicated interfaces and components and shared capabilities. Interfaces and components may be configured to be used by respective nodes, or may be configured to support enhanced resiliency as redundant primary and spare interfaces and components. In response to detecting a failing or failing primary interface or component, the MN-PCH automatically performs failover operations to replace the primary with the spare. Moreover, the failover operation is transparent to the operating systems running on the platform's nodes.
Abstract:
A storage system is provided. The storage system includes a plurality of storage units, each of the plurality of storage units having storage memory for user data and a plurality of storage nodes, each of the plurality of storage nodes configured to have ownership of a portion of the user data. The storage system includes a first pathway, coupling the plurality of storage units such that each of the plurality of storage units can communicate with at least one other of the plurality of storage units via the first pathway without assistance from the plurality of storage nodes.
Abstract:
A plurality of storage nodes is provided. The plurality of storage nodes is configured to communicate together as a storage cluster. Each of the plurality of storage nodes includes nonvolatile solid-state memory. The plurality of storage nodes is configured to distribute user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of one of the plurality of storage nodes. A chassis enclosing the plurality of storage nodes includes power distribution, a high speed communication bus and the ability to install one or more storage nodes which may use the power distribution and communication bus in some embodiments. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.