Abstract:
An improved X-ray tube target comprises a refractory metal target substrate and a refractory metal focal track applied to the target substrate by a tape casting process. The X-ray tube target comprises a refractory metal target substrate and a refractory metal focal track formed on the target substrate to form a focal track/target substrate interface plane that varies less than about ±0.13 mm.
Abstract:
A method of bonding a metallic target layer and a graphite disk to provide a composite rotating X-ray tube target wherein a layer of vanadium, titanium, or their alloys is placed between the target layer and the graphite disk. The assembly is heated in a rapid manner through a temperature range as provided by a carbon-braze metal eutectic temperature and a braze metal melt temperature with continued heating to a temperature of 75.degree. C. above the melt temperature. The elevated temperature is maintained for about 5 minutes and then the assembly is cooled in a rapid manner through the temperature range. A composite X-ray tube target is produced having a high remelt temperature and bond strength.
Abstract:
The apparatus is an anode for an X-ray tube which is rotated at high speeds during operation. The anode include a plate of refractory material with high mechanical strength. On both faces of the plate are fixed two blocks of light weight refractory material. One of the blocks is formed of several sub-blocks fixed to one another through brazing. A layer of X-ray emitting mattering is deposited on the outer surface of these sub-blocks.
Abstract:
A composite target for an x-ray tube has a graphite substrate portion and a metal portion, the two portions being bonded together by a platinum braze. A tantalum wetting agent layer on the graphite acts to improve the bond by causing the platinum to better wet the graphite portion.
Abstract:
A rotating anode X-ray tube is provided which includes an anode disk having a central axis of rotation and a circumferential peripheral edge lying in a plane perpendicular to that axis of rotation. A ring-shaped target is mounted to the disk adjacent the peripheral edge and the disk includes a mechanism formed integrally solid with the disk and remote from the target for mounting the disk to a support shaft of a rotor within a vacuum housing to permit rotation of the disk about the axis of rotation of the disk. The disk is formed integrally solid along the aforementioned plane, including that portion of the disk coincident with the axis of rotation and the disk has a thickness which increases progressively in a radially inward direction from the peripheral edge, including that portion of the disk between the target and the mechanism for coupling, to counteract a radially inward increase in the disk upon high speed rotation of the disk. A cathode is provided for bombarding the target with thermions to generate X-rays which escape the vacuum housing through an appropriately placed X-ray penetrable window.
Abstract:
The invention pertains to a rotating anode with graphite for an X-ray tube in which the quality of the bond with the graphite is considerably improved in comparison with the prior art, through the use of a bonder element comprising beryllium.
Abstract:
A composite target for an X-ray tube has a graphite substrate portion and a metal portion, the two portions being bonded together by successive interspersed layers of platinum and tantalum. The platinum layer is disposed between the graphite substrate portion and the tantalum layer. The tantalum layer acts to bond the metal portion to the platinum layer and also acts as an isolator to prevent the formation of carbides by migration through the bonding layers.
Abstract:
A method for the diffusion bonding of a graphite member to a metallic surface as part of a composite rotary anode for an X-ray tube is set forth. In the completed structure a compound laminate separating and metallurgically bonded to the graphite member and to the metallic surface consists of, in sequence, a layer comprising carbide of vanadium and of a metal selected from the group consisting of of molybdenum and tungsten, a layer of metal selected from the group consisting of vanadium and vanadium alloys, a zone of interdiffused metals comprising platinum and vanadium and then a continuous layer comprising platinum or platinum alloy.
Abstract:
A method for the diffusion bonding of a graphite member to a metallic surface of molybdenum, molybdenum alloy, tungsten or tungsten alloy as part of a composite rotary anode for an X-ray tube is set forth. In the completed structure a crack-free compound laminate separating and joining the graphite member and the metallic surface comprises a layer of carbide of metal of the metallic surface bonded to a layer of platinum or platinum alloy.
Abstract:
A rotary anode comprising a basic body of carbon whose surface is provided with a pyrolytic graphite coating having a crystallographic layer structure. A metallic layer of high-melting temperature, in which X-rays are generated during operation in an X-ray tube, is provided on the body. The metallic layer and the pyrolytic graphite coating have a common contact face which cuts through the crystallographic layers in the pyrolytic graphite. Heat developed in the metallic layer is discharged through the face into the pyrolytic graphite layers.