Abstract:
An X-ray-tube target assembly includes an annular monolithic X-ray-tube target shaft and a monolithic X-ray-tube target cap. The target shaft is a stepped target shaft. The target cap is inertially welded to the target shaft. The target assembly is made by inertially welding together a monolithic solid cylinder and a monolithic solid X-ray-tube target cap and then machining the target shaft to be annular and to have the step.
Abstract:
An x-ray target assembly is formed by passing a rotary shaft through the center hole of a graphite disk such that the back surface of the disk rests on a flange part of the rotary shaft and the front surface is contacted by a nut which engages with the tip of the rotary shaft. Annular brazing materials are placed adjacent contact areas where the disk contacts the rotary shaft and the nut such that braze joints are made to secure the disk with the nut and the rotary shaft. Grooves may be formed on the surfaces of the nut and the flange part of the rotary shaft which contact the disk such that the brazing material can more efficiently fill the gaps between contacting surfaces.
Abstract:
A rotating anode structure for an X-ray tube is provided, having a lightweight target anode. A carbon-carbon composite target substrate has constituents and weave geometries. A refractory metal focal track layer is deposited on the substrate to produce X-rays. An interlayer is disposed between the focal track layer and the substrate to relieve thermal expansion mismatch stresses between the carbon-carbon composite anode target substrate and the refractory metal focal track layer. The interlayer is a rhenium interlayer and the focal track layer is typically a tungsten-rhenium focal track layer.
Abstract:
An improved high performance x-ray system having a rotating anode therein which includes an improved target/stem assembly comprising a metallic target and a large bore, thin-walled tubular metal stem which, when connected to a rotor body assembly, provides a rotating x-ray tube anode assembly is disclosed. An insert of an alloy, for example, tantalum alloy, is placed between the target layer and the large bore, thin-walled tubular niobium or niobium alloy stem and then bonded thereto to produce a composite x-ray tube target/stem assembly. The target/stem assembly is then connected to a rotor body assembly by fasteners, preferably threaded, to produce a rotating anode assembly having high bond strength that provides acceptable balance during x-ray tube operations.
Abstract:
An improved high performance x-ray system having a rotating anode therein which includes an improved target/stem connection wherein at least about 40,000 x-ray scan-seconds are accomplished prior to tube failure due to anode assembly imbalance comprising a metallic target and a metal stem bonded to provide a composite rotating x-ray tube target is disclosed. An insert of an alloy, for example, tantalum alloy, is placed between the target layer and the stem and then bonded thereto to produce a composite x-ray tube target/stem having a high remelt temperature and bond strength which retains its balance throughout the manufacturing process and during x-ray tube operations is also disclosed.
Abstract:
A rotatable x-ray target assembly and process for manufacturing the same is provided for an x-ray tube. The x-ray target assembly comprises an x-ray target member having an opening disposed therethrough and a support member having: a mounting surface disposed transversely to the axis of rotation, a lower surface of the target member being disposed on the mounting surface; and, a threaded stem extending from said mounting surface through the opening of the target member. The support member also comprises a nut adapted to receive the threaded stem, the nut engaging an upper surface of the target member. The target member is secured to the support member by brazing material disposed between the lower surface of the target member and the mounting surface, a first portion of the brazing material being diffused into the target member and a second portion of the brazing material being diffused into the mounting surface of the support member. With such arrangement, the target member is structurally bonded to the support member. Thus, the target member is substantially prevented from slipping on the support member during the rotation of the x-ray target member during operation of the x-ray tube, thereby preventing the target member from becoming imbalanced on the support member and substantially eliminating vibration of the target member during rotation.
Abstract:
A bearing structure for an X-ray tube is provided that includes a journal bearing shaft with a radially protruding thrust bearing flange encased within a bearing housing or sleeve. The sleeve includes a thrust seal that is engaged with the sleeve in a manner to maintain coaxiality for the rotating liquid metal seal formed in the sleeve about the shaft. The shaft includes a central bore containing a cooling tube that directs coolant within the bore to maximize the heat transfer from the shaft to the coolant, allowing materials with lower thermal conductivities, such as steel, to be used to form the bearing shaft. The thrust flange on the shaft is formed with channel(s) therein that enable the coolant and/or the liquid metal to effect greater heat transfer on the components of the sleeve through the thrust flange, thereby reducing thermal deformation of the bearing components.
Abstract:
The present invention relates to mounting of an anode disk. In order to provide a mount of an anode disk to a rotating shaft that is suitable for increased thermal loads on the anode disk, a rotating anode assembly (10) is provided that comprises an anode disk (12), a rotating shaft (14), and an anode disk support (16). The anode disk is concentrically mounted to a rotating axis (18) of the rotating shaft via the anode disk support, and the anode disk support comprises a first support (20) with a first circular axial support surface (22) that is provided at the rotating shaft in a concentric manner with the rotating axis. Further, the anode disk support comprises a second support (24) with a second axial support surface (26) that is at least temporarily attached to the rotating shaft for urging the anode disk against the first support surface in an axial clamping direction. Still further, the first support is provided as a radially flexible support (28). Upon heating up of the anode disk during X-ray generation, and a thermal expansion of the anode disk, the radially flexible support bends (32) radially such that the first axial support surface at least partly follows the thermal expansion in a radial direction.
Abstract:
An improved anode assembly for an x-ray tube is described herein. The assembly includes: (a) a target having a central cavity formed therein; (b) a tubular stem for connection to the target to form a target/stem assembly; (c) an insert within the central cavity, shaped to receive a portion of the stem, and comprising a niobium-based alloy; and (d) a rotor body assembly adapted for connection to the target/stem assembly and rotation therewith. X-ray tubes which incorporate such an anode assembly are also described, as are methods for bonding a target to a tubular stem for use in a rotating x-ray tube.
Abstract:
An improved high performance x-ray system having a rotating anode therein which includes an improved target/stem connection and a coating, operatively positioned between the target and the stem, for enhancing the diffusion therebetween to reduce tube failure due to anode assembly imbalance comprising a metallic target and a metal stem bonded to provide a composite rotating x-ray tube target is disclosed. An insert of an alloy, for example, titanium alloy, is placed between the target layer, the stem and a coating, operatively positioned between the target and the stem, for enhancing the diffusion therebetween and then bonded thereto to produce a composite x-ray tube target/stem having a high remelt temperature and bond strength which retains its balance throughout the manufacturing process and during x-ray tube operations is also disclosed.