Abstract:
This disclosure is concerned with method and apparatus for vaporizing liquid solutions in order to detect, quantitate, and/or determine physical or chemical properties of samples present in liquid solution. Mixtures may be separated by an on-line liquid chromatographic column and the methods used for detection, quantitation, identification, and/or determination of chemical and physical properties include mass spectrometry, photoionization, flame ionization, electron capture, optical photometry, including UV, visible, and IR regions of the spectrum, light scattering, light emission, atomic absorption, and any other technique suitable for detecting or analyzing molecules or particles in a gaseous or vacuum environment. The method and apparatus involves controlled partial vaporization of the solution. Methods are disclosed for controlling the degree of partial vaporization and the temperature at which this vaporization occurs, and for maintaining this degree of vaporization essentially constant even though the solvent flow rate and/or composition may vary in either a controlled or an uncontrolled fashion. This "thermospray" method and apparatus allows the solvent to be substantially vaporized to produce a supersonic free jet containing a fractionGOVERNMENT SUPPORTThe invention described herein was made in the course of work under a grant or award from the Department of Health and Human Services (formerly Health Education and Welfare).
Abstract:
This invention relates to a thermal analysis cell which is capable of supplying meaningful data in a high vacuum which is particularly useful for operations within a mass spectrometer or similar instrument which allows the heating of samples within the confinement of the mass spectrometer vacuum or within the ion source and has means for withdrawal from or addition to the cell of gases or vaporized materials. The cell comprises a silver block to facilitate achieving uniform heat throughout the cell. The silver block has a capped end having an aperture therein. The block is insulated against the push-through shaft by a section of boron nitride which is an excellent thermal insulator. The silver cell is equipped with well(s) containing control and reference temperature sensors. A third and larger well is designed to contain the sample. Inlet and outlet passages are provided through the block to facilitate gas or vapor movement in the capped area. The sample itself is loaded into a glass or metal capillary and pushed into the well and onto a needle which is coupled to a thermocouple temperature sensor assembly.
Abstract:
The invention relates to an ionization chamber for connection to a mass spectrometer. The ionization chamber has a temperature-control block with a gas inlet and a gas channel which starts at the gas inlet and leads into a gas outlet. A temperature-control device is positioned along the gas channel and ensures that a gas flowing in the gas channel is brought to a specific temperature, i.e. it is heated or cooled, before it enters the ionization chamber. The temperature-control block has a formed part into which a structure of the gas channel is incorporated and which is fabricated by means of a sol-gel process, for example out of a glass or ceramic material.
Abstract:
Improved techniques are provided for forming ionized molecules from electrosprayed droplets for analysis by a mass spectrometer. A high voltage is applied to a capillary tube for spraying droplets at substantially atmospheric pressure or above, and the electrosprayed droplets contain sample solute of interest and solvent. The electrosprayed droplets are passed into an ion generating chamber which is maintained at a pressure in the range of from 0.2 Torr to 10 Torr. The walls of the ion generating chamber are controllably heated to a temperature which will desolvate the droplets and produce ionized molecules of interest for analysis by the mass spectrometer. The electrospray technique does not rely upon a countercurrent heated gas flow, and provides a particularly simple and inexpensive means to couple electrospray ionization to either quadrupole or magnetic mass analyzers.
Abstract:
This disclosure is concerned with method and apparatus for vaporizing liquid solutions in order to detect, quantitate, and/or determine physical or chemical properties of samples present in liquid solution. Mixtures may be separated by an on-line liquid chromatographic column and the methods used for detection, quantitation, indentification, and/or determination of chemical and physical properties include mass spectrometry, photoionization, flame ionization, electron capture, optical photometry, including UV, visible, and IR regions of the spectrum, light scattering, light emission, atomic absorption, and any other technique suitable for detecting or analyzing molecules or particles in a gaseous or vacuum environment. The method and apparatus involves controlled partial vaporization of the solution. Methods are disclosed for controlling the degree of partial vaporization and the temperature at which this vaporization occurs, and for maintaining this degree of vaporization essentially constant even though the solvent flow rate and/or composition may vary in either a controlled or an uncontrolled fashion. This "thermospray" method and apparatus allows the solvent to be substantially vaporized to produce supersonic free jet containing a fraction of unvaporized solvent as liquid droplets entrained in the jet. Solutes which are less volatile than the solvent are preferentially contained in the droplets. Methods are diGOVERNMENT SUPPORTThe invention described herein was made in the course of work under a grant or award from the Department of Health, Education, and Welfare.
Abstract:
This invention relates to a thermal analysis cell which is capable of supplying meaningful data in a high vacuum and which is particularly useful for operations within a mass spectrometer or similar instrument which allows the heating of samples within the confinement of the mass spectrometer vacuum or adjacent to the ion source. The cell comprises a silver block to guarantee uniform heat throughout the cell. It is insulated against the push-through shaft by a section of boron nitride, which is an excellent thermal insulator, and by sapphire or alumina, for example. The silver cell is equipped with two equal temperature sensing wells containing sample and reference temperature sensing means. A third and usually smaller well, designed to contain the block temperature sensing means, is usually provided. The sample itself is loaded into a metal cup which is secured to its well, and which contacts the temperature sensing means. A similar cup, usually containing non-reactive material, is inserted in the reference well and contacts its temperature sensing means, usually a thermocouple. The cell assembly has a detachable temperature sensing head part.
Abstract:
This invention relates to a thermal analysis cell which is capable of supplying meaningful data in a high vacuum and which is particularly useful for operations within a mass spectrometer or similar instrument which allows the heating of samples within the confinement of the mass spectrometer vacuum or adjacent to the ion source. The cell comprises a silver block to guarantee uniform heat throughout the cell. It is insulated against the push-through shaft by a section of boron nitride, which is an excellent thermal insulator, and by sapphire or alumina, for example. The silver cell is equipped with two equal temperature sensing wells containing sample and reference temperature sensing means. The sample itself is loaded into a metal cup which is usually secured to its well, and which contacts the temperature sensing means. A similar cup, usually containing non-reactive material, is inserted in the reference well and contacts its temperature sensing means, usually thermocouple. The cell assembly has a detachable temperature sensing head part. External means are provided for utilizing the output of the reference temperature sensing element for use in controlling the heating of the cell.