Abstract:
A plurality of terminal fittings 11 are mounted to a housing 20, board connecting portions 13 having mounting portions 14 at lower ends protrude rearward, fixed fittings 30 having mounting plates 32 at lower edges are mounted to opposite side surfaces of the housing 20, and the mounting portion 14 of each terminal fitting 11 and the mounting plates 32 of the fixed fittings 30 are secured to a PCB 40 by reflow soldering. During the reflow soldering, a drawing force toward the PCB 40 acts on each of the terminal fittings 11 and the fixed fittings 30 based on surface tension of molten solder H, but the center of the fixed fitting 30 in the fore/aft direction of the board connecting portion 13 is positioned forward of the center of gravity position O of a connector 10, and rotation moment Mb toward the PCB 40 acts on the front of the housing 20 based on a drawing force Fb on the side of the fixed fitting 30 to prevent the front from being raised.
Abstract:
A notch portion 7A is disposed on a formation surface of a wiring pattern 7 and is located in a contact point with a wiring pattern 9 of an outside substrate 8, so that a solder 9a melted by reflow soldering slowly flows up along an edge of the notch portion 7A, improving a solder-joint performance. The notch portion 7A is formed in a recess shape as formed by cutting away the substrate 6 and as a result, the melted solder stays in the recess portion, which prevents the melted solder from moving up over the notch portion 7A.
Abstract:
A power semiconductor module includes a housing, terminal elements leading to the outside of the housing, an electrically insulated substrate arranged inside the housing, with the substrate being comprised of an insulating body and having on the first main face facing away from the base plate a plurality of connecting tracks electrically insulated from each other. The terminal and connecting elements are arranged on a connecting track in with contact faces contacting connecting tracks or power semiconductor components, with the individual contact faces having a plurality of partial contact faces. In one optional embodiment, each partial contact face has a maximum area of 20 mm2. In another embodiment, partial contact faces each are arranged at a distance of approximately 5 mm with regard to each other and the connection of the partial faces to the connecting tracks or the power semiconductor components is flush.
Abstract:
A circuit board connector has a housing 10 and terminal fittings (30) mounted in the housing (10). The terminal fittings (30) have board connecting portions (34) drawn out of the housing (10). The board connecting portions (34) are arranged on the surface of a circuit board (K) and connected with conductors on the circuit board (K) by soldering. Notches (36) are formed in lateral edges (37) of the board connecting portions (34) and have upward-sloped surfaces (39) to which solder (H) applied to the conductors adheres. A solder test is conducted by observing from above the adhered state of the solder (H) to the sloped surfaces (39) of the notches (36).
Abstract:
A socket having a structure for grasping solder balls is disclosed. A grasping hole is laterally defined in the solder joint of each terminal of the socket, and a stop wall is formed at the dielectric housing spaced from the grasping hole at a proper distance. The solder ball is secured between the stop wall and the solder joint with a portion of the solder ball being received in the grasping hole. The dimension of the grasping hole is slightly larger than that of a side surface of the solder ball received in the grasping hole, whereby the solder ball is freely movable up and down in the grasping hole of the solder joint. Therefore, when the socket is soldered to the circuit board, the solder balls can automatically fully contact the surface of the circuit board.
Abstract:
A blade terminal for a surface mount electrical connector is provided. A first elongate member of a terminal body cooperates with a housing of the electrical connector to secure the terminal body to the connector housing. A second elongate member of the terminal body includes a curved portion having a hole therethrough. The curved portion includes a convex surface that facilitates automated assembly operations, and the aperture helps to overcome surface tension in liquid solder, thereby promoting a secure electrical connection.
Abstract:
A terminal (1) for an electrical connector includes a flat soldering portion (11), a flexed portion (12) extending from the soldering portion, and a contacting portion (14) extending upwardly from the flexed portion. The soldering portion has a soldering face (111) and the connecting portion extends away from the soldering face. A rectangular overflowing aperture (120) extends through a centre of the flexed portion. Thus, the terminal is securely soldered on a printed circuit board to thereby achieve a reliable electrical connection between the terminal and the printed circuit board.
Abstract:
There is described a process for producing printed circuits comprising a laminar support, an electrically conductive track on the laminar support, and an auxiliary conductive element soldered to the conductive track. There is a provision to apply the auxiliary conductive element by means of an apparatus for applying SMD components.
Abstract:
An electromagnetic shield is provided and includes a shield body having an upper wall connected to opposing side walls and opposing end walls. At least two opposing walls of the electromagnetic shield each have a plurality of resilient fingers formed at a lower edge thereof. The electromagnetic shield also includes a solder mass securely held by the fingers by being interleaved between the fingers of each of the at least two opposing walls. The interleaving of the solder mass results in the solder mass being securely held by the fingers and ready for mounting to an electronic component for shielding a portion of the electronic component from undesirable and potentially damaging emissions from neighboring components. A method of mounting an electromagnetic shield to an electronic component having a planar surface and a method of interleaving the solder mass are also provided.
Abstract:
This improved surface mount power supply can withstand the rigors of the manufacturing process and still create sturdy and robust connection to a user's circuit card. The open frame power module uses a U-shaped or T-shaped interconnect rather than a spherical interconnect. In one embodiment, the U-shaped interconnect can have a hole through one surface to allow the wicking of solder. The wicked solder provides a sturdier connection that is more likely to survive subsequent reflow processes. The power module is also built on a thicker FR4 board. The thicker board is less likely to warp during subsequent heating.