Abstract:
Techniques are provided for catalyst preparation. A system for catalyst preparation may include an agitator disposed inside a polymerization catalyst tank and configured to mix a polymerization catalyst and a solvent to generate a polymerization catalyst solution. The system may also include a heating system coupled to the polymerization catalyst tank and configured to maintain a temperature of the polymerization catalyst solution above a threshold. The system may also include a precontactor configured to receive feed streams comprising an activator and the polymerization catalyst solution from the polymerization catalyst tank to generate a catalyst complex. The system may also include a transfer line configured to transfer the catalyst complex from an outlet of the precontactor to a reactor.
Abstract:
A composite vehicle component. The composite vehicle component includes a polymer matrix and carbon spheres dispersed throughout the polymer matrix. The carbon spheres have a diameter of 10 to 400 μm and include at least 90 wt. % carbon.
Abstract:
Provided is a system for supplying a liquid (such as an irritative chemical solution) safely. This liquid supplying system comprises: (a) a means that creates a negative pressure in a treatment chamber by driving a first depressurizing means and depressurizing the treatment chamber; (b) a means that introduces the negative pressure of the treatment chamber to a measurement chamber; (c) a means that maintains the negative pressure introduced to the measurement chamber; (d) a means that sucks a liquid from a container into the measurement chamber by employing the negative pressure of the measurement chamber; and (e) a means that sucks the liquid of the measurement chamber into the treatment chamber by employing a vacuum in the treatment chamber.
Abstract:
The present invention provides a quantitative catalyst supply device that supplies a predetermined amount of catalyst slurry through an injection port formed through a container bottom. The quantitative catalyst supply device includes: an extendible supply pipe connected to a hopper and filled with catalyst slurry; a head connected to the supply pipe and supplying catalyst slurry to the injection port at the container bottom; a cylinder connected to a side of the supply pipe and supplying a predetermined amount of catalyst slurry through the head; and valve units disposed in an upper portion and a lower portion of the supply pipe spaced from the cylinder and opened or closed by operation of the cylinder.
Abstract:
A catalyst composition may include a precontacted mixture of an olefin polymerization catalyst and an agent including an ammonium salt. The catalyst activity of the catalyst composition in the presence of water may be greater than if no ammonium salt were present in the catalyst composition. The ammonium salt may include a tetraalkylammonium salt, and the olefin polymerization catalyst may include a metallocene compound.
Abstract:
A method of hydrothermal processing of highly toxic substances, wastes and metal powders, comprises a batch processing cycle of at least following steps i. to viii: i. preparing a batch of highly toxic waste, substances and metal powders for processing; ii. applying precision dozing to the batch to obtain a mixture of the batch with water and at least one additional reagent in preset proportions; iii. feeding the mixture into a reactor; iv. spraying the mixture inside the reactor with a mechanical spray nozzle; v. supplying an additional oxidizing agent inside the reactor; vi. adjusting a temperature inside the reactor to above 374.2° C.; vii. adjusting a pressure inside the reactor to above 21.8 MPa, thereby driving the water into supercritical condition and initiating a supercritical hydrothermal oxidation process; and viii. keeping the mixture in the reactor for a preset amount of time, and at the same time. The method further comprises removing a produced steam and hydrogen mixture from the reactor via a steam-gas unit and droplet separator into a wastewater condenser unit and a gas drainage pipe, and venting suspended solids through a bottom part of the reactor into a solids collector unit. The method then provides the steps of repeating the batch processing cycle after it has terminated; and monitoring and controlling the temperature and pressure inside the reactor via an Automatic Process Control System (APCS) during all steps.
Abstract:
A microfluidic test carrier having a substrate, covering layer, and capillary structure formed in the substrate is provided. The capillary structure is enclosed by the substrate and covering layer and comprises a receiving chamber, sample chamber and connection channel between the receiving and sample chambers. The receiving chamber has two boundary surfaces and a side wall, wherein one boundary surface forms the bottom and the other forms the cover. The receiving chamber has a surrounding venting channel and dam between the receiving chamber and venting channel. The dam and venting channel form a capillary stop configured as a geometric valve, through which air from the receiving chamber can escape into the venting channel. The connecting channel between the venting channel outflow and sample chamber inflow controls fluid transport from the receiving chamber into the sample chamber. The capillary stop is configured to prevent autonomous fluid transport from the receiving chamber.
Abstract:
An energy-saving, downsized gas supply apparatus equipped with a vaporizer is provided, wherein the gas supply apparatus is capable of stably and easily performing highly accurate gas flow rate control without requiring rigorous temperature control on the vaporizer side. The present invention pertains to a gas supply apparatus equipped with a vaporizer that includes (a) a liquid receiving tank; (b) a vaporizer that vaporizes liquid; (c) a high-temperature type pressure type flow rate control device that adjusts a flow rate of a vaporized gas; and (d) heating devices that heat the vaporizer, the high-temperature type pressure type flow rate control device, and desired portions of pipe passages connected to the vaporizer and the high-temperature type pressure type flow rate control device.
Abstract:
A mobile fluid cracking catalyst injection system and a method of controlling a fluid catalyst cracking process is provided. In one embodiment, a mobile fluid catalyst cracking system includes a transportable platform, a catalyst reservoir coupled to the platform and a flow control device coupled to an outlet of the reservoir and adapted to control the flow of catalyst from the reservoir to a fluid catalyst cracking unit (FCCU).
Abstract:
The present invention provides a fixed quantity supply equipment for inflators which is combined with a heat-treatment equipment for inflators. A bottom portion 22 of an inflator accommodating chamber 20 at a predetermined position is opened by an opening/closing means 30 utilizing pneumatics to cause inflators 40 inside the inflator accommodating chamber to fall naturally. Thereafter, the bottom portion 22 is closed, the bottom portion 22 of the next inflator accommodating chamber 20 is opened to cause inflators 40 inside the same to fall naturally. These actions are repeated to supply the inflators 40 in a constant number.