Abstract:
A method for the production of a planar structure is disclosed. The method comprises producing on a substrate a plurality of structures of substantially equal height, and there being a space in between the plurality of structures. The method further comprises providing a fill layer of electromagnetic radiation curable material substantially filling the space between the structures. The method further comprises illuminating a portion of the fill layer with electromagnetic radiation, hereby producing a exposed portion and an unexposed portion, the portions being separated by an interface substantially parallel with the first main surface of the substrate. The method further comprises removing the portion above the interface.
Abstract:
An object of the invention is to provide a surface mounted resonator that improves impact resistance by the shape of a mounting terminal provided on an outside bottom face of a stacked resonator. A surface mounted crystal resonator is provided with a plurality of mounting terminals electrically connected to a hermetically sealed crystal piece at both ends of an outside bottom face having a rectangular shape long in the lengthwise direction, the mounting terminals having the same external dimensions with a total dimension of the mounting terminals in a lengthwise direction of the outside bottom face being 70% or more [but less than 100%] of a dimension in the lengthwise direction of the outside bottom face. Respective facing sides of the mounting terminals facing each other in a central area of the outside bottom face are formed curved in a convex shape such that a curvature thereof decreases gradually.
Abstract:
A method of providing microelectromechanical structures (MEMS) that are compatible with silicon CMOS electronics is provided. The method providing for processes and manufacturing sequences limiting the maximum exposure of an integrated circuit upon which the MEMS is manufactured to below 350° C., and potentially to below 250° C., thereby allowing direct manufacturing of the MEMS devices onto electronics, such as Si CMOS circuits. The method further providing for the provisioning of MEMS devices with multiple non-conductive structural layers such as silicon carbide separated with small lateral gaps. Such silicon carbide structures offering enhanced material properties, increased environmental and chemical resilience whilst also allowing novel designs to be implemented taking advantage of the non-conductive material of the structural layer. The use of silicon carbide being beneficial within the formation of MEMS elements such as motors, gears, rotors, translation drives, etc where increased hardness reduces wear of such elements during operation.
Abstract:
A microelectromechanical system (MEMS) device includes a semiconductor substrate, a MEMS including a fixed electrode and a movable electrode formed on the semiconductor substrate through an insulating layer, and a well formed in the semiconductor substrate below the fixed electrode. The well is one of an n-type well and a p-type well. The p-type well applies a positive voltage to the fixed electrode while the n-type well applies a negative voltage to the fixed electrode.
Abstract:
The invention relates to MEMS devices. In one embodiment, a micro-electromechanical system (MEMS) device comprises a resonator element comprising a semiconducting material, and at least one trench formed in the resonator element and filled with a material comprising oxide. Further embodiments comprise additional devices, systems and methods.
Abstract:
A micromachined structure, comprises a substrate and a cavity in the substrate. The micromachined structure comprises a membrane layer disposed over the substrate and spanning the cavity.
Abstract:
A micro electro-mechanical system, which can be stably formed so as to prevent sticking of a movable part and which has a narrow gap, and a method of manufacturing the same are provided. The micro electro-mechanical system includes at least one fixed electrode formed above a principal surface of a semiconductor substrate and at least one movable electrode formed on the principal surface. The at least one movable electrode includes the movable part separated from the principal surface and the at least one fixed electrode. The movable part is movable with respect to the principal surface and the at least one fixed electrode. The method of manufacturing the micro electro-mechanical system includes a sacrifical film formation step for forming a sacrifical film above the principal surface, an electrode layer formation step for forming an electrode layer above the principal surface so as to cover over the sacrifical film, an etching step for partially etching the electrode layer via a pattern so as to form the at least one electrode and the at least one fixed electrode, a sacrifical film removal step for removing the sacrifical film, and a conducting film formation step for forming a conducting film on surfaces of the at least one electrode and the at least one fixed electrode.
Abstract:
A transducer package fabrication process is provided, the completed transducer package achieving a thin package profile. The fabrication process utilizes an encapsulation material to eliminate the need for a transducer support substrate, the encapsulation material isolating the terminal pads from one another while holding the transducer and signal processing IC in position.
Abstract:
A microelectromechanical resonator may include one or more resonator masses that oscillates in a bulk mode and that includes a first plurality of regions each having a density, and a second plurality of regions each having a density, the density of each of the second plurality of regions differing from the density of each of the first plurality of regions. The second plurality of regions may be disposed in a non-uniform arrangement. The oscillation may include a first state in which the resonator mass is contracted, at least in part, in a first and/or a second direction, and expanded, at least in part, in a third and/or a fourth direction, the second direction being opposite the first direction, the fourth direction being opposite the third direction.