Abstract:
Disclosed is a low-attenuation single-mode optical fiber having a photoconductive core and a clad, which shows very low OH concentration in MFD (Mode Field Diameter) region. The optical fiber includes a core positioned at its center for photoconduction, and a dehydrated clad and a base clad which are coated on the clad in order. The dehydrated clad has a substantially identical refractive index to the base clad. A refractive index of the core is greater than those of the dehydrated clad and the base clad. The dehydrated clad has a relatively lower OH concentration than the base clad. The region composed of the core and the dehydrated clad has an MFD region at which OH concentration is less than 0.8 ppb.
Abstract:
The present invention provides an optical synthetic quartz glass material which substantially does not cause changes in transmitted wave surface (TWS) by solarization, compaction (TWS delayed), rarefaction (TWS progressed) and photorefractive effect when ArF excimer laser irradiation is applied at a low energy density, e.g. at energy density per pulse of 0.3 mJ/cm2 or less. The present invention further provides a method for manufacturing the same. In order to solve the above-mentioned problems, the optical synthetic quartz glass material of the present invention is characterized in that, in a synthetic quartz glass prepared by a flame hydrolysis method using a silicon compound as a material, the followings are satisfied that the amount of SiOH is within a range of more than 10 ppm by weight to 400 ppm by weight, content of fluorine is 30 to 1000 ppm by weight, content of hydrogen is 0.1×1017 to 10×1017 molecules/cm3 and, when the amounts of SiOH and fluorine are A and B, respectively, total amount of A and B is 100 ppm by weight or more and B/A is 0.25 to 25.
Abstract translation:本发明提供了一种光学合成石英玻璃材料,其在低温下施加ArF准分子激光照射时,通过太阳化,压实(TWS延迟),稀释(TWS进行)和光折射效应基本上不会引起透射波面(TWS)的变化 能量密度,例如 每个脉冲的能量密度为0.3mJ / cm 2以下。 本发明还提供一种制造该方法的方法。 为了解决上述问题,本发明的光学合成石英玻璃材料的特征在于,在使用硅化合物作为材料的火焰水解法制备的合成石英玻璃中,满足以下条件: SiOH的量在大于10重量ppm至400重量ppm的范围内,氟含量为30至1000重量ppm,氢含量为0.1×10 17至10 10 17分子/ cm 3,当SiOH和氟的量分别为A和B时,A和B的总量为100重量ppm以上,B / A为 0.25至25。
Abstract:
Fluorine-containing synthetic quartz glass is produced by feeding silica-forming material, hydrogen, and oxygen gases from a burner to a reaction zone, flame hydrolyzing the silica-forming material in the reaction zone to form particles of silica, depositing the silica particles on a rotatable substrate in the reaction zone to form a porous silica matrix, and heating and vitrifying the porous silica matrix in a fluorine compound gas-containing atmosphere. During formation of the porous silica matrix, the angle between the center axes of the silica matrix and the silica-forming reactant flame from the burner is adjusted to 90–120° so that the porous silica matrix has a density of 0.1–1.0 g/cm3 with a narrow distribution within 0.1 g/cm3. The resulting quartz glass has a high transmittance to light in the vacuum ultraviolet region below 200 nm.
Abstract translation:含氟合成石英玻璃是通过将二氧化硅形成材料,氢气和氧气从燃烧器送入反应区而产生的,火焰水解反应区中二氧化硅形成材料,形成二氧化硅颗粒,将二氧化硅颗粒沉积在 反应区中的可旋转基底,形成多孔二氧化硅基质,并在含氟化合物气体的气氛中加热和玻璃化多孔二氧化硅基质。 在形成多孔二氧化硅基体期间,将二氧化硅基体的中心轴线与来自燃烧器的形成二氧化硅的反应物火焰之间的角度调节至90-120°,使得多孔二氧化硅基质的密度为0.1-1.0g / cm 3,窄分布在0.1g / cm 3以内。 所得的石英玻璃对于低于200nm的真空紫外线区域的光具有高透射率。
Abstract:
A method to form quartz glass ingots of ultra low contamination and defect levels by firing a high-purity quartz form as the feedstock, wherein the quartz glass ingot is free-formed on a platen rotating concentrically with the feedstock quartz article.
Abstract:
A method produces a glass body that contains a reduced amount of OH groups in the metallic-oxide-containing glass layer and that has a reduced amount of transmission loss due to OH groups when the glass body is transformed into an optical fiber. The production method produces an optical glass body. An optical fiber contains the optical glass body in at least one part of its region for guiding a lightwave. The production method includes the following steps: (a) introducing into a glass pipe a gas containing an organometallic compound and a glass-forming material; (b) decomposing the organometallic compound into an organic constituent and a metallic constituent; (c) heating and oxidizing the metallic constituent so that produced glass particles containing a metallic oxide are deposited on the inner surface of the glass pipe to form a glass-particle-deposited layer; and (d) consolidating the deposited layer to form a metallic-oxide-containing glass layer.
Abstract:
To provide an optical component of quartz glass for use in a projection lens system for immersion lithography with an operating wavelength below 250 nm, which is optimized for use with linearly polarized UV laser radiation and particularly with respect to compaction and birefringence induced by anisotropic density change, it is suggested according to the invention that the quartz glass should show the combination of several properties: particularly a glass structure essentially without oxygen defects, a mean content of hydroxyl groups of less than 60 wt ppm, a mean content of fluorine of less than 10 wt ppm, a mean content of chlorine of less than 1 wt ppm. A method for producing such an optical component comprises the following method steps: producing and drying an SiO2 soot body under reducing conditions and treating the dried soot body before or during vitrification with a reagent reacting with oxygen defects of the quartz glass structure.
Abstract:
The invention provides a method for efficiently manufacturing a synthetic silica glass substrate for photomasks excellent in light stability and capable of being applied to ArF-Wet photolithography with maximum birefringence of 1.4 nm/cm or less, homogeneity of diffractive index of 2×10−5 or less and an average content of hydrogen atoms of 1018 to 1019, comprising the steps of: forming a mask-plain substrate by slicing a block of a synthetic silica glass; heating each sheet of the mask-plain substrate at a temperature of 1100° C. or more; slowly cooling the substrate at a cooling rate of 0.01 to 0.8° C./min; and placing the substrate in a hydrogen gas atmosphere at least at the latter half of the slow cooling step or after the slow cooling step.
Abstract:
The invention provides a low cost method of manufacturing high capacity preforms by chemical vapor deposition. More particularly, there is described a method of manufacturing an optical fiber preform, which method comprises the steps of providing a substrate tube of silica doped with sufficient chlorine to obtain an OH concentration of less than 100 ppb and doped with sufficient fluorine proportional to the chlorine doping to obtain a refractive index that is lower than that of a natural silica, depositing inner cladding and an optical core inside the substrate tube, collapsing the substrate tube to form a primary preform, and depositing outer cladding of said natural silica on the resulting primary preform. The invention is applicable to manufacturing optical fibers.
Abstract:
A method of manufacturing an optical fibre, comprises: (i) forming a preform (10) for drawing into the fibre, the preform (10) comprising a bundle of elongate elements, (20,50) arranged to form a first region that becomes a cladding region of the fibre and a second region that becomes a core region of the fibre; (ii) drawing the preform (10) into the fibre. The bundle of elongate elements (20,50) comprises a plurality of elongate elements (20) of a lower purity dielectric material and at least one elongate element (50) of a higher purity dielectric material. The first region comprises a plurality of the lower purity elements (20) and the second region comprises the higher purity element (50).
Abstract:
A method for deposition glass soot for making an optical fiber preform. A fuel and a glass precursor are flowed to a burner flame forming glass soot which is deposited onto a glass target. By first depositing an insulating layer of glass soot with a low velocity burner flame, the amount of water which may be adsorbed into the surface of the glass target can be reduced. Thereafter, the flame velocity may be increased to increase the deposition rate of the glass soot without significantly increasing the concentration of water incorporated into the glass target.