Abstract:
Methods and apparatus for providing a tunable absorption-emission band in a wavelength selective device are disclosed. A device for selectively absorbing incident electromagnetic radiation includes an electrically conductive surface layer including an arrangement of multiple surface elements. The surface layer is disposed at a nonzero height above a continuous electrically conductive layer. An electrically isolating intermediate layer defines a first surface that is in communication with the electrically conductive surface layer. The continuous electrically conductive backing layer is provided in communication with a second surface of the electrically isolating intermediate layer. When combined with an infrared source, the wavelength selective device emits infrared radiation in at least one narrow band determined by a resonance of the device. In some embodiments, the device includes a control feature that allows the resonance to be selectively modified. The device has broad applications including gas detection devices and infrared imaging.
Abstract:
An infrared spectrometer includes an infrared source system that is stabilized to provide a substantially constant output light intensity. The infrared source system includes a source element adapted to receive electrical power and to emit light at an intensity related to the electrical power received by the source element. A light detector is mounted in position to receive light emitted from the source element and to provide an output signal related to the intensity of the light received by the detector. A feedback control loop receives the signal from the detector and provides electrical power to the source element to maintain the intensity of the light output from the source element at a selected level as detected by the detector.
Abstract:
An infrared source and a gas sensor, a first layer and a second layer effecting bandpass filter characteristics for an operating frequency range.
Abstract:
Thermally tunable optical sensors are used in sampling tools for analysis of samples from a wellbore. The thermally tunable optical sensors generate a series passbands of wavelength emissions and detect attenuation in a signal thereof. The attenuation detected is processed and used to determine aspects of the samples. Analysis may be completed remotely (outside of the wellbore), within the wellbore (during drilling or otherwise), or as a part of another process such as fluid management, transport and refinement.
Abstract:
The present invention provides a method for using infrared light either alone or in conjunction with visible light to create an improved system for cytologic examination. As stated above, infrared light is sensitive to molecular and biochemical changes and can thus be used to identify specific chemical species or substances. This characteristic can be used to identify areas on a slide most likely to contain an abnormality, and can further provide information to overlay on an image of the slide to enhance the visual contrast for the human screener. This process of image enhancement via the use of multivariate spectroscopy can be used to dramatically enhance the information content provided to the medical professional.
Abstract:
A spectrometer system includes a thermal light source for illuminating a sample, where the thermal light source includes a filament that emits light when heated. The system additionally includes a spectrograph for measuring a light spectrum from the sample and an electrical circuit for supplying electrical current to the filament to heat the filament and for controlling a resistance of the filament. The electrical circuit includes a power supply that supplies current to the filament, first electrical components that sense a current through the filament, second electrical components that sense a voltage drop across the filament, third electrical components that compare a ratio of the sensed voltage drop and the sensed current with a predetermined value, and fourth electrical components that control the current through the filament or the voltage drop across the filament to cause the ratio to equal substantially the predetermined value.
Abstract:
An infrared spectrometer includes an infrared source system that is stabilized to provide a substantially constant output light intensity. The infrared source system includes a source element adapted to receive electrical power and to emit light at an intensity related to the electrical power received by the source element. A light detector is mounted in position to receive light emitted from the source element and to provide an output signal related to the intensity of the light received by the detector. A feedback control loop receives the signal from the detector and provides electrical power to the source element to maintain the intensity of the light output from the source element at a selected level as detected by the detector.
Abstract:
A high frequency infrared radiation source including a hermetically sealed chamber with a plasma generating gas therein, a pair of spaced electrodes in the chamber for creating a plasma therebetween, a window in the chamber, and a collimating lens made of infrared radiation transmissive material disposed between the pair of electrodes and the window.
Abstract:
An infrared LASER diode based high intensity light (100) for use as an aircraft landing light or searchlight in conjunction with night vision imaging systems. The high intensity light (100) uses infrared LASER diodes (110) installed into a heat sink (112) for temperature stability. The infrared light emitted from the LASER diodes (110) is transmitted to an optical positioning plate (106) by optical transmission means (108). The optical positioning plate (106) combines the emissions of the individual LASER diodes (110) to a single infrared light beam, which is collimated by an aspheric lens (102).
Abstract:
An infrared radiation source for sensor and spectroscopic use has a thin, electrically conducting film adapted to emit infrared radiation when heated. The film is formed from a gas or vapor phase and includes a network of diamond-like carbon. Depending on the percentage of metal atoms in the film, the film may have metal atoms which are either distributed in the diamond-like carbon network or else form an additional metallic network. The metal may be tungsten, chromium, or titanium, and the film may include silicon and oxygen.