Abstract:
An autonomous mobile robot. The robot includes a computing device and a modeling module. The modeling module is communicably connected to the computing device, and is configured for autonomously generating a model for each navigation mode of the robot.
Abstract:
A mobile robot is equipped with a range finder and a stereo vision system. The mobile robot is capable of autonomously navigating through urban terrain, generating a map based on data from the range finder and transmitting the map to the operator, as part of several reconnaissance operations selectable by the operator. The mobile robot employs a Hough transform technique to identify linear features in its environment, and then aligns itself with the identified linear features in order to navigate through the urban terrain; while at the same time, a scaled vector field histogram technique is applied to the combination of range finder and stereo vision data to detect and avoid obstacles the mobile robot encounters when navigating autonomously. Also, the missions performed by the mobile robot may include limitation parameters based on distance or time elapsed, to ensure completion of the autonomous operations.
Abstract:
A method, apparatus, and carrier medium carrying computer readable code. The apparatus includes a mobile robot arranged in operation to traverse an area, a first transceiver for a wireless network mounted on the robot and arranged in operation to communicate with a second transceiver to effect radio measurement operations for determining at each of a plurality of locations covering the area a measure indicative of the path loss between the first and second transceivers, and a location determining system at least a component of which is mounted on the robot and arranged in operation to determine the location of the first transceiver in the area.
Abstract:
Communication system of a group robot system is made hierarchical, having a base station as an uppermost layer and a plurality of layers formed by a plurality of sensing robots, and the plurality of sensing robots are controlled such that a sensing robot belonging to an upper layer of the hierarchical structure has higher sensing resolution than a sensing robot belonging to a lower layer of the hierarchical structure. Thus, a group robot system capable of efficiently searching for an object can be obtained.
Abstract:
A mobile robot is equipped with a range finder and a stereo vision system. The mobile robot is capable of autonomously navigating through urban terrain, generating a map based on data from the range finder and transmitting the map to the operator, as part of several reconnaissance operations selectable by the operator. The mobile robot employs a Hough transform technique to identify linear features in its environment, and then aligns itself with the identified linear features in order to navigate through the urban terrain; while at the same time, a scaled vector field histogram technique is applied to the combination of range finder and stereo vision data to detect and avoid obstacles the mobile robot encounters when navigating autonomously. Also, the missions performed by the mobile robot may include limitation parameters based on distance or time elapsed, to ensure completion of the autonomous operations.
Abstract:
An apparatus for controlling a robot and a method thereof are provided. The apparatus includes: a state interpretation unit determining whether or not a current situation belongs to a preset unstable state by evaluating the current situation based on a plurality of perception information items; and a target generation unit setting a target action of the robot by comparing the current situation and the determination result with a predetermined value system, and then, modifying the target action by receiving a feedback of the action performance result of the robot as perception information. According to the method and apparatus, by inputting a processing procedure and a value system to solve a variety of unstable states that can occur in situations of a user and circumstances surrounding the robot, the robot can actively respond with actions.
Abstract:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
Abstract:
A remotely controlled robot comprises a unit storing the layout plan of a building, a unit receiving a position remotely designated in the layout plan from a remote location and a unit controlling the travel of the robot to the designated position. A self-position identification method is implemented by a robot with a camera whose shooting direction can be changed. The robot takes in advance a panoramic picture of a room where the robot may travel, generates a reference picture by extracting a plurality of block pictures from the panoramic picture and identifies a room where the robot is located, by applying correlation and DP matching, using both a picture taken in the room where the robot is located and the reference picture.
Abstract:
A mobile device includes a mobile section having left and right independently and concurrently driven wheels. The mobile device can rotate about the axis thereof by spinning the wheels in directions opposite to each other. The mobile device further includes a sensor to detect an obstacle in front. The mobile device activates the sensor while rotating 360 degrees by spinning the left and right wheels in opposite directions and determines the presence of an obstacle in the vicinity. The mobile device then determines an area determined as an area containing no obstacle to be an area where the mobile device is able to freely move around.
Abstract:
A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.