Abstract:
An X-ray spectrometer which uses at least one curved analyzing crystal and which provides improved wavelength resolution of characteristic X-rays used for analysis and improved ratio of characteristic X-rays to background intensity by using only effective diffractive regions of the analyzing crystal. X-ray blocking plates upstand from an end of a crystal support member supporting the analyzing crystal in the direction of angular dispersion of the crystal toward the inside of a Rowland circle. Incident X-rays going from the point X-ray source toward the crystal and X-rays diffracted by the crystal toward an X-ray detector are partially blocked by the X-ray blocking plates. The shielded regions vary according to the incident angle θ of the incident X-rays. Optimum or nearly optimum effective regions of the surface of the crystal can be used at all times.
Abstract:
To provide an electron beam assisted EEM method that can realize ultraprecision machining of workpieces, including glass ceramic materials, in which at least two component materials different from each other in machining speed in a machining process are present in a refined mixed state and the surface state is not even, to a surface roughness of 0.2 to 0.05 nm RMS. The EEM method comprises a working process in which a workpiece and chemically reactive fine particles are allowed to flow along the working face to remove atoms on the working face chemically bonded to the fine particles together with the fine particles through chemical interaction between the fine particles and the working face interface. The workpiece comprises at least two component materials present in a refined mixed state and different from each other in machining speed in the machining process. After the exposure of the workpiece in its working face to an electron beam to conduct modification so that the machining speed of the surface layer part in the working face is substantially even, ultraprecision smoothening is carried out by working process.
Abstract:
The projection lithographic method for producing integrated circuits and forming patterns with extremely small feature dimensions includes an illumination sub-system (36) for producing and directing an extreme ultraviolet soft x-ray radiation λ from an extreme ultraviolet soft x-ray source (38); a mask stage (22) illuminated by the extreme ultraviolet soft x-ray radiation λ produced by illumination stage and the mask stage (22) includes a pattern when illuminated by radiation λ. A protection sub-system includes reflective multilayer coated Ti doped high purity SiO2 glass defect free surface (32) and printed media subject wafer which has a radiation sensitive surface.
Abstract:
Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other. The substrate processing tool may further comprise one or more reflectors adapted to generate a flood pattern of ultraviolet radiation over the substrate that has complementary high and low intensity areas which combine to generate a substantially uniform irradiance pattern if rotated. Other embodiments are also disclosed.
Abstract:
A lithographic apparatus includes a radiation source configured to produce extreme ultraviolet radiation. The source includes a chamber in which a plasma is generated, and a mirror configured to reflect radiation emitted by the plasma. The mirror includes a multi-layer structure that includes alternating Mo/Si layers. A boundary Mo layer or a boundary Si layer or a boundary diffusion barrier layer of the alternating layers forms a top layer of the mirror, the top layer facing inwardly with respect to the chamber. A hydrogen radical generator is configured to generate hydrogen radicals in the chamber. The radicals are configured to remove debris generated by the plasma from the mirror. A support is constructed and arranged to support a patterning device configured to pattern the radiation to form a patterned beam of radiation. A projection system is constructed and arranged to project the patterned beam of radiation onto a substrate.
Abstract:
The EUV light source device eliminates radiation other than EUV radiation from the light which it emits, and supplies only the EUV radiation to an exposure device. A composite layer consisting of a plurality of Mo/Si pair layers is provided upon the front surface of an EUV collector mirror, and blazed grooves are formed in this composite layer. Radiation emitted from a plasma is incident upon this EUV collector mirror, and is reflected or diffracted. The reflected EUV radiation (including diffracted EUV) proceeds towards an intermediate focal point IF. The radiation of other wavelengths proceeds towards some position other than this focal point IF, because its reflection angle or diffraction angle is different. A SPF shield having an aperture portion is provided at the focal point IF. Accordingly, only the EUV radiation passes through the aperture portion and is supplied to the exposure device, while the other radiation is intercepted by the shield.
Abstract:
A device for improving resolution capability of an x-ray optical apparatus for an x-ray incident from a direction of incidence includes a mirror element including a mirror edge formed as a cylindrical shell section around an edge axis. The mirror element is spaced apart, in a radial direction, from a focal axis that is parallel to the direction of incidence. The edge axis is oriented at a first non-zero angle relative to the focal axis when viewed along a radial axis. The edge axis is oriented at a second non-zero angle relative to the focal axis.
Abstract:
A multi-energy imaging system and method for selectively generating high-energy X-rays and low-energy X-ray beams are described. A pair of optic devices are used, one optic device being formed to emit high X-ray energies and the other optic device being formed to emit low X-ray energies. A selective filtering mechanism is used to filter the high X-ray energies from the low X-ray energies. The optic devices have at least a first solid phase layer having a first index of refraction with a first photon transmission property and a second solid phase layer having a second index of refraction with a second photon transmission property. The first and second layers are conformal to each other.
Abstract:
An x-ray focusing device generally includes a slide pivotable about a pivot point defined at a forward end thereof, a rail unit fixed with respect to the pivotable slide, a forward crystal for focusing x-rays disposed at the forward end of the pivotable slide and a rearward crystal for focusing x-rays movably coupled to the pivotable slide and the fixed rail unit at a distance rearward from the forward crystal. The forward and rearward crystals define reciprocal angles of incidence with respect to the pivot point, wherein pivoting of the slide about the pivot point changes the incidence angles of the forward and rearward crystals while simultaneously changing the distance between the forward and rearward crystals.
Abstract:
An extreme UV radiation producing device in which adhesion of solid tin in the vacuum pump of an evacuation device is restricted, so that the maintenance period and the replacement period of the pump is prolonged is achieved by the provision of a treatment unit between a radiation source chamber and the evacuation device. The treatment device has a hydrogen radical producing part in which tin and/or a tin compound in the evacuated gas from the radiation source chamber is/are made into a tin hydride; and a heat treatment part in which the tin hydride is thermally decomposed and in which the tin produced liquefied and separated from the evacuated gas. The liquid tin is fed into a collecting/storage vessel and the evacuated gas from which the tin and/or a tin compound has been removed fed to the evacuation device.