Abstract:
A cathode substrate 10 is heated to 400 to 600° C. in the atmosphere of hydrocarbon gas such as methane and the gas is allowed to react with the surface of the cathode substrate 10 by a thermal CVD method. Thus, an electron emission source in which graphite nano-fibers 11 are allowed to grow in a gaseous-phase on the surface of the cathode substrate 10 by using nickel or iron existing on the surface of the cathode substrate 10 as a nucleus is held between upper and lower end hats 12 to form a cathode part 13.
Abstract:
A method for making carbon nanotube particulates involves providing a catalyst comprising catalytic metals, such as iron and molybdenum or metals from Group VIB or Group VIIIB elements, on a support material, such as magnesia, and contacting the catalyst with a gaseous carbon-containing feedstock, such as methane, at a sufficient temperature and for a sufficient contact time to make small-diameter carbon nanotubes having one or more walls and outer wall diameters of less than about 3 nm. Removal of the support material from the carbon nanotubes yields particulates of enmeshed carbon nanotubes that retain an approximate three-dimensional shape and size of the particulate support that was removed. The carbon nanotube particulates can comprise ropes of carbon nanotubes. The carbon nanotube particulates disperse well in polymers and show high conductivity in polymers at low loadings. As electrical emitters, the carbon nanotube particulates exhibit very low “turn on” emission field.
Abstract:
The present invention is directed toward cathodes and cathode materials comprising carbon nanotubes (CNTs) and particles. The present invention is also directed toward field emission devices comprising a cathode of the present invention, as well as methods for making these cathodes. In some embodiments, the cathode of the present invention is used in a field emission display. The invention also comprises a method of depositing a layer of CNTs and particles onto a substrate to form a cathode of the present invention, as well as a method of controlling the density of CNTs used in this mixed layer in an effort to optimize the field emission properties of the resulting layer for field emission display applications.
Abstract:
This invention relates generally to the end derivatization of single-wall carbon nanotubes and to the introduction of endohedral groups to single-wall carbon nanotubes. In one embodiment, the single-wall carbon nanotubes are chemically derivatized at their ends (which may be made either open or closed with a hemi-fullerene dome). In another embodiment, the single-wall carbon nanotubes can be modified endohedrally, such as, for example, by including one or more metal atoms inside the structure or, alternatively, by loading the single-wall carbon nanotubes with one or more smaller molecules that do not bond to the structures.
Abstract:
An emissive flat panel display device has an electron emission and control structure which uses carbon nanotubes or the like as electron sources and is formed using a relatively inexpensive manufacturing technique. Cathode electrodes, an insulation layer and gate electrodes are formed on a back substrate by screen printing. Insulation-layer openings are formed in the insulation layer and control apertures are formed in the gate electrodes at the same positions as the insulation-layer apertures. Inner peripheries of the control apertures are retracted from inner peripheries of the insulation-layer apertures formed in the insulation layer, thus preventing sagging of a silver paste for gate electrodes into the insulation-layer apertures in a step for forming the gate electrodes. Ink containing carbon nanotubes is applied to the control apertures formed in the gate electrodes by an ink jet method or the like.
Abstract:
An electron emission film capable of enhancing or suppressing electron emitting characteristics at part of an electron emitting surface, and an electric field electron emission device. Many single-wall carbon nanotubes each having a slender crystal structure are arranged at the center of a CNT film (13) in such a posture as to project almost vertically with respect to the film surface. That is, a fiber structure at a specific surface (raised surface (14)) is oriented vertically to promote electron emission, or a fiber structure is made flat by an action of surface tension to suppress electron emission from a specific surface. For example, the edge portion of a CNT film, which is an area from which electrons are emitted curvedly, is rendered a flat-hair surface (15).
Abstract:
A graphite nanofiber material herein provided has a cylindrical structure in which graphene sheets each having an ice-cream cone-like shape whose tip is cut off are put in layers through catalytic metal particles; or a structure in which small pieces of graphene sheets having a shape adapted for the facial shape of a catalytic metal particle are put on top of each other through the catalytic metal particles. The catalytic metal comprises Fe, Co or an alloy including at least one of these metals. The material can be used for producing an electron-emitting source, a display element, which is designed in such a manner that only a desired portion of a luminous body emits light, a negative electrode carbonaceous material for batteries and a lithium ion secondary battery. The electron-emitting source (a cold cathode ray source) has a high electron emission density and an ability of emitting electrons at a low electric field, which have never or less been attained by the carbon nanotube. The negative electrode carbonaceous material for batteries has a high quantity of doped lithium and ensures high charging and discharging efficiencies. Moreover, the lithium ion secondary battery has a sufficiently long cycle life, a fast charging ability and high charging and discharging capacities.
Abstract:
A method for making a carbon nanotube-based field emission display device includes the following steps: providing an insulative layer (22) having a first surface; depositing a layer of catalyst (26) on the first surface of the insulative layer; forming a spacer (28) having a number of openings therein such that patterned areas of the layer of catalyst are exposed in the openings; forming arrays of carbon nanotubes (30) extending from the layer of catalyst in the openings; forming a cathode electrode (34) on a top of each of the arrays of carbon nanotubes; forming gate electrodes (40) on a second, opposite surface of the insulative layer offset from the patterned areas; removing portions of the insulative layer corresponding to the arrays of carbon nanotubes so as to expose the arrays of carbon nanotubes; and attaching an anode electrode (50) having a phosphor screen (52) to the above obtained structure.
Abstract:
A field emission type cold cathode device comprises a substrate, and a metal plating layer formed on the substrate, the metal plating layer contains at least one carbon structure selected from a group of fullerenes and carbon nanotubes, the carbon structure is stuck out from the metal plating layer and a part of the carbon structure is buried in the metal plating layer.
Abstract:
To provide an electron-emitting device that can be used to manufacture an image forming apparatus having a superior display quality and in which the development of the abnormal light emission point is suppressed and the unevenness of brightness is not caused. The electron-emitting device includes: a cathode electrode and a gate electrode, which are formed on a base surface and opposed to each other with a space therebetween; and an electron-emitting film which is located on the cathode electrode, and in the electron-emitting device, the electron-emitting film has two end portions (A and B) in a plane substantially parallel to the base surface in a direction substantially perpendicular to a direction along which the cathode electrode and the gate electrode are opposed to each other, and a structure is used in which electric field strengths applied between each of the two end portions (A and B) of the electron-emitting film and the gate electrode are made weaker than an electric field strength applied between a region between the two end portions (A and B) of the electron-emitting film and the gate electrode at a time of driving.