Abstract:
A method of forming an electronic device on a flexible substrate without using acetone dissolvent, including the steps of: printing a hydrophobic mask on a porous membrane to form a pattern thereon which is complementary to a desired pattern; filtering an aqueous suspension of an electronic material through the non-printed region of the porous membrane, whereby some electronic material is deposited on said non-printed region following the desired pattern; pressing the flexible substrate against the printed face of the membrane in order to transfer the patterned electronic material deposited on the porous membrane to the flexible substrate to form the electronic device thereon.
Abstract:
A method of patterning holes includes placing a substrate on a stage of a laser system, the substrate having a graphene layer on a surface thereof, generating a pulse laser from the laser system, and forming a plurality of hole patterns spaced apart from each other on the graphene layer by irradiating the pulse laser while the graphene layer is in motion.
Abstract:
In an example, a process includes forming a patterned layer on a polymer substrate. The process also includes depositing a graphene-containing material on the patterned layer to form a plurality of graphene traces of a tamper detection circuit.
Abstract:
A copper foil composite comprising a copper foil and a resin layer laminated thereon, wherein equation 1: (f3×t3)/(f2×t2)=>1 is satisfied when t2 (mm) is a thickness of the copper foil, f2 (MPa) is a stress of the copper foil under tensile strain of 4%, t3 (mm) is a thickness of the resin layer, f3 (MPa) is a stress of the resin layer under tensile strain of 4%, and equation 2: 1
Abstract:
According to embodiments of the disclosure, an electronic device package may include a wire layer and a rigid element. The wire layer includes a first surface and a second surface opposite to each other, and the second surface of the wire layer has at least one coarse structure. A portion of the second surface having the coarse structure has a greater roughness than another portion of the second surface. The rigid element is disposed on the first surface of the wire layer, wherein a stiffness of the rigid element is greater than a stiffness of the wire layer and a projection area of the coarse structure on the first surface of the wire layer overlaps an edge of the rigid element.
Abstract:
A touch panel includes: a uni-axially oriented base film; a transparent electrode pattern layer positioned on the uni-axially oriented base film; a first passivation layer formed in an edge region of the transparent electrode pattern layer and covering end portion side walls of the transparent electrode pattern layer; and a contact hole positioned on the first passivation layer and exposing the first passivation layer.
Abstract:
A printed wiring board includes a core insulation layer including a resin and having a via conductor through the core insulation layer, a first conductive layer formed on the core layer and including a copper foil and a plated film, an interlayer insulation layer formed on the first layer and including a resin, the interlayer layer having a via conductor through the interlayer layer, and a second conductive layer formed on the interlayer layer and including a copper foil and a plated film. The first layer includes a conductive circuit, the core and interlayer layers have dielectric constants of 4.0 or lower for signal transmission at frequency of 1 GHz and thermal expansion coefficient of 85 ppm/° C. or lower at or below Tg, and the foil of the first layer has thickness greater than thickness of the foil of the second layer.
Abstract:
A flexible printed circuit board includes a substrate, a circuit pattern formed on the substrate, and a protective coating layer formed on the substrate by applying and curing a coating solution to cover and protect the circuit pattern. A method for manufacturing forming a circuit pattern on a substrate and forming a protective coating layer for covering and protecting the circuit pattern by applying a coating solution on the substrate. The circuit pattern may be securely attached to the substrate, and damage and deformation of the circuit pattern due to repeated bending or warping of the substrate may be prevented, ultimately improving operational reliability.
Abstract:
A process for positive microcontact printing, including inking a patterned mold with a thiol; contacting the mold with a metal surface of a substrate; backfilling the metal surface with a solution containing an aromatic amine to form a backfilling layer; etching the metal surface of the substrate; and rinsing the substrate to remove the backfilling layer.
Abstract:
A printed circuit board with circuit visible includes a wiring layer, a first adhesive layer, a first dielectric layer, and a cover film, which are stacked in described order, the wiring layer comprising at least one electrical contact pad. The cover film has at least one opening corresponding to the electrical contact pad. The cover film includes a second dielectric layer and a second adhesive layer. A flow initiation temperature of the first adhesive layer is in a range from 85 degrees centigrade to 90 degrees centigrade, and a hardening temperature of the first adhesive being lower than 150 degrees centigrade.