Abstract:
A method for manufacturing a flexible printed circuit board includes preliminarily thermally deforming s substrate through heating, forming a circuit pattern with a conductive paste on the preliminarily thermally deformed substrate, and firing the circuit pattern. A flexible printed circuit board includes a substrate, and a circuit pattern formed by firing a conductive paste on a first surface of the substrate. The substrate is preliminarily thermally deformed and, thus, a shrinkage variation thereof before and after firing the conductive paste is zero. Dimensional stability when firing the circuit pattern printed with the conductive paste can be ensured, deterioration of adhesion between the circuit pattern and the substrate attributable to film deformation upon firing can be prevented, and stable adhesion of the circuit pattern can be maintained even after firing.
Abstract:
A method for manufacturing a flexible printed circuit board includes preliminarily thermally deforming s substrate through heating, forming a circuit pattern with a conductive paste on the preliminarily thermally deformed substrate, and firing the circuit pattern. A flexible printed circuit board includes a substrate, and a circuit pattern formed by firing a conductive paste on a first surface of the substrate. The substrate is preliminarily thermally deformed and, thus, a shrinkage variation thereof before and after firing the conductive paste is zero. Dimensional stability when firing the circuit pattern printed with the conductive paste can be ensured, deterioration of adhesion between the circuit pattern and the substrate attributable to film deformation upon firing can be prevented, and stable adhesion of the circuit pattern can be maintained even after firing.
Abstract:
A flexible cable jumper structure and manufacturing method thereof. The flexible cable jumper device of the present disclosure includes a cover layer, a first metal layer stacked on the cover layer and having a circuit pattern formed thereon, a first dielectric layer stacked on the first metal layer, a first adhesive layer applied on the first dielectric layer, a second metal layer stacked on the first dielectric layer to which the first adhesive layer is applied and having a circuit pattern formed thereon, a heat-resistant layer stacked on the second metal layer, and a terminal layer formed in one region of the heat-resistant layer and electrically connected to the first metal layer and the second metal layer.
Abstract:
A flexible printed circuit board includes a substrate, a circuit pattern formed on the substrate, and a protective coating layer formed on the substrate by applying and curing a coating solution to cover and protect the circuit pattern. A method for manufacturing forming a circuit pattern on a substrate and forming a protective coating layer for covering and protecting the circuit pattern by applying a coating solution on the substrate. The circuit pattern may be securely attached to the substrate, and damage and deformation of the circuit pattern due to repeated bending or warping of the substrate may be prevented, ultimately improving operational reliability.
Abstract:
A flexible cable jumper structure and manufacturing method thereof. The flexible cable jumper device of the present disclosure includes a cover layer, a first metal layer device of the cover layer and having a circuit pattern formed thereon, a first dielectric layer stacked on the first metal layer, a first adhesive layer applied on the first dielectric layer, a second metal layer stacked on the first dielectric layer to which the first adhesive layer is applied and having a circuit pattern formed thereon, a heat-resistant layer stacked on the second metal layer, and a terminal layer formed in one region of the heat-resistant layer and electrically connected to the first metal layer and the second metal layer.
Abstract:
The present invention relates to a method for manufacturing a flexible printed circuit board and a flexible printed circuit board manufactured by using the same. A circuit pattern is formed with a conductive paste on one surface of a base material, and the circuit pattern is sintered at a temperature of 290° C. to 420° C. to manufacture the flexible printed circuit board. As such, manufacturing costs can be reduced and productivity can be improved through a simple yet convenient process. Also, the circuit pattern is formed without a plating process, such that the problem of circuit pattern separation occurring during the plating process can be addressed and product reliability can be improved.
Abstract:
A flexible printed circuit board includes a substrate, a circuit pattern formed on the substrate, and a protective coating layer formed on the substrate by applying and curing a coating solution to cover and protect the circuit pattern. A method for manufacturing forming a circuit pattern on a substrate and forming a protective coating layer for covering and protecting the circuit pattern by applying a coating solution on the substrate. The circuit pattern may be securely attached to the substrate, and damage and deformation of the circuit pattern due to repeated bending or warping of the substrate may be prevented, ultimately improving operational reliability.