Abstract:
A flexible electronic assembly including a flexible circuit board and at least one electronic component is provided. The flexible circuit board includes at least one dielectric film layer and at least one patterned conductive layer disposed on the dielectric film layer. The electronic component is disposed on the flexible circuit board and electrically connected to the flexible circuit board. The flexible angle of the flexible electronic assembly is greater than 5 degrees.
Abstract:
A first circuit board (1) mounted with an electronic component (16) and a second circuit board (2) are vertically connected three-dimensionally through an interconnecting board (3) wherein the terminal portion (6) of the land electrode (5) on the interconnecting board (3) is buried in the termination material (9) of the interconnecting board (3). Consequently, the chance of peeling or cracking due to peeling stress or shearing stress acting between the upper/lower circuit boards and the land electrode by high density mounting, thermal shock or falling impact can be suppressed or buffered resulting in high reliability.
Abstract:
An electric circuit is applied to an object having a curved surface. The curved surface of the object is divided into sections, and the circuit is applied one section at a time. The circuit is formed between layers of dielectric material. The dielectric is applied by a computer-controlled device, which controls the position of a spray head and the rotation of the object, such that the spray head is held substantially perpendicular to the surface of the object at all times, and such that a controlled thickness of dielectric material can be deposited. The fine-featured circuits formed by the invention are rugged, and can be used on objects intended to be exposed to harsh environments.
Abstract:
A lighting device includes a heatsink 70, a socket 10 and an LED module 60. The LED module 60 has a light emitting unit 62 in a central part of a top side of a metal base substrate 63 composed of an insulating plate and a metal plate. The LED module 60 is warped such that the central part protrudes on a heatsink 70 side, which is the side opposite to the light emitting unit 62 side. The LED module 60 is mounted on the heatsink 70 in a state of the surrounds of the light emitting unit 62 being pressed according to pressing units 14T, 14L, and 14D of the socket 10. Pressing the surrounds of the light emitting unit 62 against the heatsink 70 ensures that a central part of the warping of the LED module 60 contacts the heatsink 70.
Abstract:
The invention concerns a method which consists in coating uniformly the non-developable surface (6) with an electrically conductive material (9), which is in turn coated, by spraying, with a pattern (10) of polymerizable protective material, said pattern being polymerized as it is being formed, and then selectively eliminating, through the openings (10.8) of said pattern (10), the portions of said electrically conductive material (9) which do not over said electrically conductive patterns.
Abstract:
A layered structure for use with a high power light emitting diode system comprises an electrically insulating intermediate layer interconnecting a top layer and a bottom layer. The top layer, the intermediate layer, and the bottom layer form an at least semi-flexible elongate member having a longitudinal axis and a plurality of positions spaced along the longitudinal axis. The at least semi-flexible elongate member is bendable laterally proximate the plurality of positions spaced along the longitudinal axis to a radius of at least 6 inches, twistable relative to its longitudinal axis up to 10 degrees per inch, and bendable to conform to localized heat sink surface flatness variations having a radius of at least 1 inch. The top layer is pre-populated with electrical components for high wattage, the electrical components including at least one high wattage light emitting diode at least 1.0 Watt per 0.8 inch squared.
Abstract:
A wiring substrate includes a base insulating film, a first interconnection formed on a top surface side of the base insulating film, a via conductor provided in a via hole formed in the base insulating film, and a second interconnection provided on a bottom surface side of the base insulating film, the second interconnection being connected to the first interconnection via the via conductor. The wiring substrate includes divided-substrate-unit regions, in each of which the first interconnection, the via conductor, and the second interconnection are formed. The wiring substrate includes a warpage-controlling pattern on the base insulating film, and has a warped shape such that when the wiring substrate is left at rest on a horizontal plate, at least a central part of each side of a plane surface of the substrate contacts the horizontal plate, with both ends of the side raised, where each of the sides extends along a second direction perpendicular to a first direction in the plane surface of the substrate.
Abstract:
A semiconductor device includes a rigid substrate, a flexible solid-state image sensor and bumps. The bumps are aligned along a pair of opposing edges of the rigid substrate, and the diameter of the bumps gradually increases from the center to the ends of the edges. Owing to the difference in diameter of the bumps, the solid-state image sensor is curved convexly to the rigid substrate.
Abstract:
A lighting device includes a heatsink 70, a socket 10 and an LED module 60. The LED module 60 has a light emitting unit 62 in a central part of a top side of a metal base substrate 63 composed of an insulating plate and a metal plate. The LED module 60 is warped such that the central part protrudes on a heatsink 70 side, which is the side opposite to the light emitting unit 62 side. The LED module 60 is mounted on the heatsink 70 in a state of the surrounds of the light emitting unit 62 being pressed according to pressing units 14T, 14L, and 14D of the socket 10. Pressing the surrounds of the light emitting unit 62 against the heatsink 70 ensures that a central part of the warping of the LED module 60 contacts the heatsink 70.
Abstract:
A method for producing an electrically conductive structure on a non-planar surface includes depositing a photosensitive resist coating onto the non-planar surface, exposing the photosensitive resist coating, removing a portion of the photosensitive resist coating, and depositing an electrically-conductive material onto portions of the non-planar surface that is substantially free of the photosensitive resist coating.