Abstract:
A method is disclosed for controlling a lighting fixture of a kind having individually colored light sources, e.g., LEDs, that emit light having a distinct luminous flux spectrum that varies in its initial spectral composition, that varies with temperature, and that degrades over time. The method controls such fixture so that it projects light having a predetermined desired flux spectrum despite variations in initial spectral characteristics, despite variations in temperature, and despite flux degradations over time.
Abstract:
This invention describes a method for determining the content of conjugated diolefins by means of the measurement of the MAV of a sample of catalytic cracking gasoline or thermal cracking gasoline, from its NIR (near-infrared) spectrum, and the application of said method for monitoring a unit for selective hydrogenation of the cracking gasolines.
Abstract:
We disclose measurement systems and methods for measuring analytes in target regions of samples that also include features overlying the target regions. The systems include: (a) a light source; (b) a detection system; (c) a set of at least first, second, and third light ports which transmit light from the light source to a sample and receive and direct light reflected from the sample to the detection system, generating a first set of data including information corresponding to both an internal target within the sample and features overlying the internal target, and a second set of data including information corresponding to features overlying the internal target; and (d) a processor configured to remove information characteristic of the overlying features from the first set of data using the first and second sets of data to produce corrected information representing the internal target.
Abstract:
An apparatus and method for detecting defects on a specimen includes an illumination optical unit which obliquely projects a laser onto a region which is longer in one direction on a surface of a specimen than in a transverse direction, a table unit which mounts the specimen and which is movable, a detection optical unit which detects light from the specimen illuminated by the laser with an image sensor while the table is moving, and a signal processor. The signal processor processes a signal outputted from the image sensor of the detection optical unit and converted to a digital signal and extracts defects of the specimen by comparing the converted digital signal with a reference digital signal. A display unit displays information of defects extracted by the signal processor.
Abstract:
A calibration light source outputs emission lines having a known emission-line wavelength, a spectral luminometer to be calibrated measures an emission-line output of the calibration light source, and a system control unit calibrates the wavelength of the spectral luminometer by estimating the wavelength of the emission-line output from ratios of outputs of a light receiving unit at a plurality of measurement wavelengths neighboring an emission-line wavelength and estimating a wavelength change amount from a difference between the estimated wavelength of the emission-line output and the known emission-line wavelength. The wavelength and the sensitivity of a spectral luminometer can be calibrated at a user side.
Abstract:
There is provided a chirp indicator of ultrashort optical pulse in which a target ultrashort optical pulse is introduced into a spatial filter formed of a hologram in which is recorded information of chirp quantity of an ultrashort optical pulse used as a reference. The chirp indicator identifies the chirp quantity of the ultrashort optical pulse by detecting an optical correlation between the target ultrashort optical pulse and the ultrashort optical pulse used as a reference. Here, the ultrashort optical pulse to be detected is detected for each hologram, and depending on intensity of an amplitude of light emitted from each hologram, a composition ratio of chirp quantity corresponding to each hologram is deteremined. Then, based on the determined mixture ratio of the chirp quantity, chirp quantity of the ultrashort optical pulse to be detected is determined.
Abstract:
Devices, systems, kits, and methods for detecting and/or identifying a plurality of spectrally labeled bodies well-suited for performing multiplexed assays. By spectrally labeling the beads with materials which generate identifiable spectra, a plurality of beads may be identified within the fluid. Reading of the beads is facilitated by restraining the beads in arrays, and/or using a focused laser.
Abstract:
A method for monitoring a process output with a highly abridged spectrophotometer. The method includes securing spectral data for each spectral primary used in a process, measuring spectral data with a highly abridged spectrophotometer for a sample produced by the process, determining an estimated weight for each spectral primary in the sample, and computing spectral data representative of the sample based on the secured spectral data and the determined estimated weight for each spectral primary in the sample.
Abstract:
Efficient measuring of protein solubility with the use of a precipitating agent as crystallization parameter; and production of a high-quality protein crystal with the use of a solubility curve obtained by the measuring. Protein crystal is disposed, and the surrounding thereof is filled with a protein solution. Not only is the concentration of precipitating agent in the protein solution increased but also the interference fringes of the protein solution around the crystal are observed, and in which of dissolution, growth and equilibrium the condition of crystal resides is judged from the interference fringes. The protein concentration of protein solution is simultaneously measured, and the solubility, of protein is determined from the observation results of interference fringes together with the measured protein concentration and precipitating agent concentration. Further, a solubility curve is prepared, and a protein crystal is produced through controlling of supersaturation condition.
Abstract:
A hyperspectral scene generator generates a projected linear scene where the spectral characteristics at each location that forms the scene are dynamically and arbitrarily controllable. The generator can be controlled to generate a projected linear scene including a targeted object and arbitrary spectral content that duplicates the spectral content of real targets and backgrounds to facilitate testing of target identification software of a hyperspectral imaging system in view of expected actual field operation of the sensor of the imaging system.