Abstract:
An interferometer for Fourier transform infrared spectroscopy includes a fixed assembly including a housing, a beam splitter, and a mirror fixedly positioned relative to each other. A movable assembly includes a housing, a mirror, and a motor coil, fixedly positioned relative to each other. A first flat spring has an opening for providing an unobstructed optical path of radiation therethrough. A first end of the first flat spring is secured to the fixed assembly and a second end of the first flat spring is secured to the movable assembly for providing movement of the movable assembly relative to the fixed assembly via the first flat spring. An optical relationship between the beam splitter, the mirror of the fixed assembly, and the mirror of the movable assembly is maintained independent of a distance between the movable assembly and the fixed assembly.
Abstract:
An interferometric confocal method and assembly for terabyte volume optical data memories couples two-beam spectral interferometry to chromatic confocal technology and permits a longitudinal splitting of foci in the memory volume, with the foci having limited diffraction. A spectrometer is located downstream of the interferometer with confocal discrimination in the beam path. A diffractive optical zone lens (DOZE) with a usage of the first diffraction order is introduced into the interferometric beam path to achieve longitudinal chromatic splitting. The interferometer can be a fibre-coupled interferometer with a retroreflector in the fibre-coupled reference arm and with wavelength-dependent optical path difference modification by dispersion or diffraction. The optical path difference in the interferometer is set so that easily detectable wavelets are formed from detectable interferograms by spectral analysis.
Abstract:
A spectroscopic detection system is described for monitoring ambient air for toxic chemical substances. The system can be a compact, portable multiple gas analyzer capable of detecting and discriminating a broad range of chemical constituents including various nerve and blister agents as well as toxic industrial chemicals at low or sub part per billion (ppb) levels. The system minimizes false alarms (e.g., false positives or negatives), features high specificity, and can operate with response times on the order of a few seconds to a few minutes, depending on the application. The system can be an entirely self-contained analyzer, with a Fourier Transform Infrared (FTIR) spectrometer, a gas sample cell, a detector, an embedded processor, a display, power supplies, an air pump, heating elements, and other components onboard the unit with an air intake to collect a sample and an electronic communications port to interface with external devices.
Abstract:
Cavity enhanced spectroscopy efficiently couples a broadband optical frequency comb to a high finesse optical cavity inside which a sample test gas is placed. The output of the optical cavity is a multiplicity of channels of data resulting from the differential absorption of light at various of the comb frequencies. The device can operate in a ringdown mode or a non-ringdown enhanced absorption spectroscopy mode. Careful measurement and control of cavity dispersion and comb spacing are part of the coupling process. Several dispersive detection methods adapted to detecting the multiplicity of channels are provided.
Abstract:
An arrangement for building a compact Fourier transform interferometer for optical radiation according to the Michelson principle or a principle derived therefrom. According to the invention, this arrangement is characterized in that the optical modulation of the radiation in at least one of the interferometer arms is produced by the translational displacement of micromechanical translation mirrors that are optically accessible on one side or on both sides, with an effective oscillation amplitude of at least 50 μm and a usable mirror surface area of at least 1 mm2. In doing so, the micromechanical mirror components according to the invention assume the function of known movable mirrors so that by using an almost massless microcomponent in comparison to conventional systems, a much smaller size and a mirror modulation frequency that is several orders of magnitude higher can be achieved. The arrangement according to the invention is used especially for optical spectroscopy.
Abstract:
A method for monitoring the surface roughness of a metal, comprises impinging a laser beam onto the surface of a metal layer to induce the formation of a plasmon therein, and monitoring a current of decay electrons emitted by the plasmon.
Abstract:
A mode-monitoring system used in connection with discrete beam frequency tunable laser provides optical feedback that can be used for adjusting the laser or for other processing associated with the use of the laser. For example, the output of a frequency tunable source for a frequency-shifting interferometer can be monitored to support the acquisition or processing of more accurate interference data. A first interferometer for taking desired measurements of optical path length differences traveled by different portions of a measuring beam can be linked to a second interferometer for taking measurements of the measuring beam itself. The additional interference data can be interpreted in accordance with the invention to provide measures of beam frequency and intensity.
Abstract:
A sensor containing a beam emitter that emits a first beam having laser, a beam-splitting interferometer and an array detector, wherein the first beam is to strike a sample that produces a second beam comprising a Raman signal, the beam-splitting interferometer is to create a phase delay in the second beam, and the array detector comprises a plurality of detectors is disclosed. The sensor could be used for spectroscopic detection of a sample by generating a first beam comprising laser, striking the first beam to a sample to produce a second beam comprising a Raman signal, creating a phase delay in the second beam and detecting the Raman signal of the second beam. The uses of the sensor include detection of biological and chemical warfare agents, narcotics, among others for homeland security.
Abstract:
A corrosion sensor having a bean-splitting interferometer, a spectrometer and an analyzer, wherein said corrosion sensor is a contactless corrosion sensor configured to scan a sample comprising corroded and non-corroded areas, and further wherein said spectrometer collects Raman signatures from said sample, and said analyzer maps the corroded and non-corroded areas is disclosed. The corrosion sensor could be used for evaluation the degree of corrosion in the fuselage or engine of an aircraft, for example.
Abstract:
A tunable laser according to the present invention includes a plurality of Fabry-Perot semiconductor lasers comprising a plurality of semiconductor gain medium compositions disposed on a common sub-carrier with means for thermal tuning, and coupled to a sample. In a preferred embodiment, the lasers are coupled to a common multi-mode optical fiber, and an output radiation from the multi-mode fiber is tunable by switching the drive current amongst the lasers, and by thermal tuning of each laser in the array. In one preferred embodiment of this invention the plurality of Fabry-Perot semiconductor lasers are arranged around the perimeter of a cylindrical submount with a substantially circular cross-section. In another preferred embodiment a linear array of Fabry-Perot edge-emitting lasers is directly coupled to a multi-mode fiber. In still another preferred embodiment, an array of Fabry-Perot lasers is coupled to a fiber bundle.