Abstract:
A low-cost micro-electro-mechanical system (MEMS) has a mass-produced carrier fabricated as a pre-molded leadframe so that the space of the leadframe center is filled with compound and a two-tier recess is created in the center. The first tier is filled by an inset with a first perforation and a second perforation. An integrated circuit chip with an opening and a membrane at the end of the opening, operable as a pressure sensor, microphone, speaker, etc, is assembled on the inset so that the opening is aligned with the first perforation. The chip is protected by a cover transected by a vent aligned with the second inset perforation. An air channel can then reach from the ambient through the vent and the second perforation to the second tier recess, which connects to the first perforation and the chip opening to the membrane.
Abstract:
An assembly and connection technology for a sensor system, including a sensor element having circuit elements integrated into the top side and a carrier for the sensor element, which is simple and robust and which does not require any further packaging measures for protecting the circuit elements and electrical terminals of the sensor elements after the isolation of the sensor elements. For this purpose, the carrier is provided with through contacts. In addition, the sensor element is installed in flip-chip technology on the carrier, so that the top side of the sensor element is at least regionally capped by the carrier and the circuit elements of the sensor element can be electrically contacted from the rear side of the carrier via the through contacts.
Abstract:
A semiconductor sensor has a first semiconductor layer as a base, an insulating layer formed on the first semiconductor layer, and a second semiconductor layer formed on the insulating layer. A recess is formed from a bottom surface of the first semiconductor layer up to a top surface of the insulating layer. The second semiconductor layer is covered with the insulating layer in an outer circumference of a top surface of the recess. A sensitive region of the second semiconductor layer is exposed in a region except the outer circumference of the top surface of the recess.
Abstract:
A micromechanical component includes a substrate that has a front side and a backside, the front side having a functional pattern, which functional pattern is electrically contacted to the backside in a contact region. The substrate has at least one contact hole in the contact region, which extends into the substrate, starting from the backside.
Abstract:
The formation of a semiconductor sensing device is disclosed, where the device can be used to sense pressure, for example. The device is formed by etching the entire backside of a semiconductor substrate or wafer. This streamlines the fabrication process by omitting a number of steps that would otherwise be required to selectively etch certain locations of the substrate. This also improves device performance and compactness by allowing associated support circuitry to be formed closer to a sensing region, and more particularly piezoelectric elements of the sensing region.
Abstract:
A pressure sensor includes a base substrate silicon fusion bonded to a cap substrate with a chamber disposed between the base substrate and the cap substrate. Each of the base substrate and the cap substrate include silicon. The base substrate includes walls defining a cavity and a diaphragm portion positioned over the cavity, wherein the cavity is open to an environment to be sensed. The chamber is hermetically sealed from the environment.
Abstract:
A system and method for manufacturing micro cavity packaging enclosure at the wafer level using MEMS (MicroElectroMechanical Systems) process, wherein micro cavities are formed from epoxy-bonded single-crystalline silicon wafer as its cap, epoxy and deposited metal or insulator as at least part of its sidewall, on substrate wafers.
Abstract:
A capacitive sensor according to the present invention includes a semiconductor substrate, a fixed electrode serving as a first electrode formed on a surface of or in the semiconductor substrate, a structure formed on the semiconductor substrate to have a vibratable second electrode that is formed to be spaced from and opposed to the semiconductor substrate and from the fixed electrode serving as the first electrode, a sealing member serving as a first sealing member formed on the semiconductor substrate to be spaced from the structure, to cover the structure, and to have a through hole serving as a first through hole, and a movable electrode serving as a vibratable third electrode formed on the sealing member to block up the through hole, and to be spaced from and opposed to the movable electrode.
Abstract:
The devices presented herein are capacitive sensors with single crystal silicon on all key stress points. Isolating trenches are formed by trench and refill forming dielectrically isolated conductive silicon electrodes for drive, sense and guards. For pressure sensing devices according to the invention, the pressure port is opposed to the electrical wire bond pads for ease of packaging. Dual-axis accelerometers measuring in plane acceleration and out of plane acceleration are also described. A third axis in plane is easy to achieve by duplicating and rotating the accelerometer 90 degrees about its out of plane axis Creating resonant structures, angular rate sensors, bolometers, and many other structures are possible with this process technology. Key advantages are hermeticity, vertical vias, vertical and horizontal gap capability, single crystal materials, wafer level packaging, small size, high performance and low cost.
Abstract:
The present invention improves mechanical strength of a micro-electro-mechanical device (MEMS) having a movable portion to improve reliability. In a micro-electro-mechanical device (MEMS) having a movable portion, a portion which has been a hollow portion in the case of a conventional structure is filled with a filler material. As the filler material, a block copolymer that is highly flexible is used, for example. By filling the hollow portion, mechanical strength improves. Besides, warpage of an upper portion of a structure body in the manufacture process is prevented, whereby yield improves. A micro-electro-mechanical device thus manufactured is highly reliable.