Abstract:
A method of forming an alkali metal oxide-doped optical fiber by diffusing an alkali metal into a surface of a glass article is disclosed. The silica glass article may be in the form of a tube or a rod, or a collection of tubes or rods. The silica glass article containing the alkali metal, and impurities that may have been unintentionally diffused into the glass article, is etched to a depth sufficient to remove the impurities. The silica glass article may be further processed to form a complete optical fiber preform. The preform, when drawn into an optical fiber, exhibits a low attenuation.
Abstract:
An optical fiber that includes a core containing a first concentration of germanium, an inner cladding arranged on the core, the inner cladding containing a second concentration of germanium and having a first diffusion coefficient, and an outer cladding arranged on the inner cladding, the outer cladding having a second diffusion coefficient, where the first diffusion coefficient is larger than the second diffusion coefficient, and where the first concentration of germanium is about 200% or more of the second concentration of germanium. An optical fiber constructed in this manner can be spliced with an optical fiber having a different MFD, such as a single-mode optical fiber or an erbium-doped optical fiber, with low splice loss and a sufficient splicing strength.
Abstract:
The present invention discloses a process for making rare earth (RE) doped optical fiber by using RE oxide coated silica nanoparticles as the precursor material, more particularly the method of the present invention involves preparation of stable dispersions (sol) of RE oxide coated silica nanoparticles at ambient temperature and applying a thin coating on the inner surface of silica glass tube following dip coating technique or any other conventional methods, of the said silica sol containing suitable dopants selected from Ge, Al, P, etc., the coated tubes were further processed into optical preforms by following MCVD technique and fiberized in desired configuration, the novelty lies in eliminating the step of the formation of porous soot layer at high temperature by CVD process inside a fused silica glass tube for formation of the core and also in the elemination of the incorporation of the rare earth ions into the porous soot layer following the solution doping technique or other conventional methods, the direct addition of RE oxides in the sol eliminates the formation of microcrystalites and clusters of rare earth ions and prevents change in composition including variation of RE concentration in the core which results in increase in the reproducibility and reliability of the process to a great extent, further the addition of Ge(OET)4 at ambient temperature in the silica sol reduces the quantity of GeCl4 which is required at high temperature to achieve the desired Numerical Aperture.
Abstract:
A mode converter includes first and second optical waveguides and a GRIN fiber lens. The GRIN fiber lens is attached to both the first and the second waveguides.
Abstract:
A method of fabricating a halogen-doped glass includes providing a gel monolith having a first halogen content. The method further includes reducing an impurity concentration of the gel monolith. The method further includes consolidating the gel monolith into a glass having a second halogen content. The second halogen content is less than or equal to the first halogen content. A halogen-doped glass has a fluorine content in a range between approximately 0.5 wt. % and approximately 4 wt. %, a chlorine content less than 100 parts per million, and an OH content less than one part per million.
Abstract:
The present invention provides an improved process for making rare earth doped preforms and fibers by a combination of MCVD technique and solution doping method, said method comprising developing matched or depressed clad structure inside a silica glass substrate tube followed by deposition of unsintered particulate layer containing GeO2 and P2O5 for formation of the core and solution doping by soaking the porous soot layer into an alcoholic/aqueous solution of RE-salts containing co-dopants like AlCl3/Al(NO3)3 in definite proportion, controlling the porosity of the soot, dipping period, strength of the solution and the proportion of the codopants to achieve the desired RE ion concentration in the core and minimize the core clad boundary defects and followed by drying, oxidation, dehydration and sintering of the RE containing porous deposit and collapsing at a high temperature to produce the preform and overcladding with silica tubes of suitable dimensions and fiber drawing to produce fibers.
Abstract:
Fluorine doping of trench layers in MCVD preforms is enhanced by exposing a silica soot layer, produced by MCVD, to a fluorine-containing gas at high pressure. The high pressure exposure is integrated into the MCVD process.
Abstract:
Disclosed is an optical-fiber preform having barrier layers to hydroxyl radicals, the optical-fiber preform comprising: a quartz tube in the form of a cylinder shape serving as a substrate for forming the optical-fiber preform; a first barrier layer for preventing hydroxyl radicals from permeating the optical-fiber preform and deposited onto the inner surface of the quartz tube; a second barrier layer having a permeation coefficient higher than the first barrier layer and deposited onto the first barrier layer; a third barrier layer having a permeation coefficient lower than the second barrier layer and deposited onto the second barrier layer; and, a core layer being located at the center of the optical-fiber preform.
Abstract:
An optical fiber comprises a photosensitive core that includes a concentration of a first material that increases the refractive index of the core and a concentration of a second material that is other than boron and that reduces the refractive index of the core. A cladding is disposed about the core for tending to confine light to the core. The fiber also includes at least one longitudinally extending region having a thermal coefficient of expansion that is different from the thermal coefficient of expansion of the cladding. In another embodiment, the core includes a concentration of germanium and a concentration of boron. Also disclosed is a polarization-maintaining double-clad (PM DC) fiber comprising one or both of at least one circular axially extending stress inducing region(s) and an inner cladding comprising a circular outer perimeter. Fibers according to the invention can include a rare earth dopant for emitting light of a selected wavelength responsive to being pumped by pump light of a pump wavelength that is different than the selected wavelength.
Abstract:
A thulium doped silicate glass composition which contains SiO2, Al2O3, and La2O3 emits visible and UV light when excited by infrared light. The glass composition may also contain GeO2 and Er2O3. When excited by infrared light of about 1060 nm, the glass emits visible light at fluorescent transitions of the Tm3null ions with major broad features at 365, 455, 472, 651, and 791 nm.
Abstract translation:含有SiO 2,Al 2 O 3和La 2 O 3的掺doped硅酸盐玻璃组合物在被红外光激发时发射可见光和UV光。 玻璃组合物还可以含有GeO 2和Er 2 O 3。 当由约1060nm的红外光激发时,玻璃在365nm,455nm,472nm,651nm和791nm处具有主要的广泛特征,在Tm 3+离子的荧光转变下发射可见光。