Abstract:
A high S/N Fourier transform spectrometer with low A/D converter noise, comprising a light receiving device; a low gain channel and a high gain channel which convert to and retain as digital signals the output from the light receiving device; and a computation control unit which determines a correlation equation between the low gain and high gain channels and substitutes the low gain channel output converted using the correlation equation for the saturated portion of the high gain channel output.
Abstract:
A device for target prediction and collision warning for tracking objects in a region proximate to a vehicle includes a signal transmitter which provides first and second detection signals for at least partial reflection by an object located in a spatial region. The device further includes a signal receiver for receiving the deflected first and second detection signals corresponding to first and second parameter signals. A Fourier transform circuit is provided for receiving the first and second object parameter signals and generating first and second Fourier transform object parameter signals corresponding to relative range and velocity data of a target being tracked. The device includes a probabilistic neural network which preferably sorts the first and second Fourier transform object parameter signals corresponding to the relative range and velocity of a target being tracked. Operatively coupled to the probabilistic neural network is a target tracker circuit which receives the sorted first and second Fourier transform object parameter signals after at least three samples of relative range and velocity data have been measured. The target tracker generates an output signal indicative of a prediction of regression parameters of a second order or higher order equation that characterizes the change in relative range and velocity of the target being tracked.
Abstract:
Apparatus for detecting molecular vapors in an atmospheric region includes an interferometer which monitors light parameter data signals received and provides an interferometer light parameter signal corresponding to the light parameter data signals at a plurality of frequencies. The apparatus further includes an interferogram detector/converter which records and digitizes the interferometer light parameter signal to generate a plurality of discrete data points wherein each discrete data point corresponds to the interferometer light parameter signal at a specific frequency. The apparatus also includes a Fourier transform circuit for receiving the discrete interferometer light parameter signal and providing a Fourier transformed molecular parameter data signal. The apparatus further includes a probabilistic neural network for receiving and sorting the Fourier transformed molecular parameter data signals without the use of a priori training data.
Abstract:
A method of analyzing an optical image of a scene to determine the spectral intensity of each pixel of the scene, which includes collecting incident light from the scene; (b) passing the light through an interferometer which outputs modulated light corresponding to a predetermined set of linear combinations of the spectral intensity of the light emitted from each pixel; focusing the light outputted from the interferometer on a detector array; and processing the output of the detector array to determine the spectral intensity of each pixel thereof. If the interferometer is of the moving type scanning in one dimension is required where the detector array is one dimensional, and no scanning when the detector array is two-dimensional. If the interferometer is of the non-moving type scanning is required in one dimension when the detector array is two-dimensional, and in two dimensions when the detector array is one-dimensional.
Abstract:
A Fourier-transform (FT) infrared (IR) spectrometer includes a Michelson interferometer without an IR beam compensator. An input IR beam is directed through a substrate and a beamsplitter attached to the substrate for support, with the input IR beam divided by the beamsplitter into a first beam portion incident upon a fixed retroreflector and a second beam portion incident upon a movable retroreflector. The first and second beam portions are then recombined to provide an uncompensated output IR beam with an interference pattern which is directed onto a sample to provide an uncompensated interferogram. The uncompensated interferogram is converted from a time domain to a frequency domain via a Fourier-transform to provide a complex intermediate spectrum, followed by a calculation of a corrected phase angle in terms of wavenumber arising from the substrate's optical thickness. The complex intermediate spectrum is then rotated by a negative of the corrected phase angle. An inverse Fourier-transform is used to form a corrected real compensated intermediate interferogram. The corrected real compensated intermediate interferogram is then Fourier-transformed into a spectrum using a conventional approach to remove asymmetric noise and correct for small phase errors.
Abstract:
A procedure for enhancing the resolution of spectral data, in which the Fourier self-deconvolution method FSD is used to produce from the input spectrum a data set in an interval 0-L.sub.t, the maximum entropy method MEM is used to compute prediction error filter coefficients {a.sub.k } from this data, and by the linear prediction method LP, using coefficients {a.sub.k } and data points 0 to M. Data are predicted in the interferogram I(x) beyond L.sub.t, whereby output spectrum maximum line narrowing with minimum distortion is achieved.
Abstract:
In each arm of a Michelson interferometer (IF) a retroreflector (110; 110') having its aperture plane aligned perpendicularly to the optical axis is mounted on a respective holder (106; 106') which in turn is rigidly connected to one end of a shaft (105; 105') rotatably mounted in a connecting member (103; 103'). To the other end of the shaft (105; 105') a first gear (107.sub.1 ; 107.sub.1 ') is secured which is coupled via a toothed belt (909; 109') to an identically configured second gear (107.sub.2 ; 107.sub.2 ') which concentrically to a drive shaft (102; 102') of an electric motor (101; 101') is rigidly connected to the housing (1010; 1010') thereof. At a predetermined distance from the shaft (105; 105') the drive shaft (102; 102') is fixedly connected to the connecting member (103; 103') so that on rotation of the motor drive shafts (102; 102') the length of the optical paths is shortened in one interferometer arm and lengthened synchronously therewith in the other interferometer arm, or vice versa. Furthermore, the aperture planes of the two retroreflectors (110, 110') always remain unchanged aligned perpendicularly to the optical axis (FIG. 2 ).
Abstract:
The apparatus and method permit simultaneous and precise determination of the temperature and spectral emittance, over a wide spectral region, of a hot sample. Radiance, and hemispherical reflectance and transmittance measurements are employed, and FT-IR technology is advantageously applied. Reflectance and (where necessary) transmittance measurements are utilized to determine the fraction of incident radiation, of selected wavelength, that is absorbed by the sample, in turn establishing a spectral emittance value. Taken with the measured radiance at the same wavelength, the spectral emittance value will provide a quantity that can be matched with the spectral radiance of a theoretical black body, again at the selected wavelength, to thereby derive the temperature of the hot sample; this in turn enables determination of the spectral emittance of the sample over a desired spectral range.
Abstract:
An interferometer mirror such as may be used in an FTIR spectrometer is mounted to a mirror alignment device which allows alignment of the mirror during operation of the interferometer. The alignment device includes a base, a mirror support to which the mirror is mounted, and means for mounting the mirror support to the base to allow resilient pivoting of the mirror about an initial position around two orthogonal axes when force is applied to the mirror support. Two drive coils of square configuration are mounted around the periphery of the mirror support. Each drive coil has lower coil sections along two opposite quadrants and higher coil sections, with the two drive coils being mounted to the mirror supports so that the lower sections of each are in adjacent quadrants. A magnetic field, such as that provided by permanent magnets, is applied to the lower sections of each coil while the upper sections of each coil are outside the magnetic field. When current is supplied in one direction to a drive coil, the current interacts with the magnetic field passing through the lower sections of the coil to tilt the mirror support about one axis of rotation in one direction, whereas current supplied to the coil in the opposite direction will tilt the magnet support in the opposite direction about the axis. In this manner, current can be supplied to the two coils as necessary to hold the mirror support and thus the mirror attached to it in a desired orientation.
Abstract:
A microscope accessory uses symmetrical pairs of identical parabolic mirrors as an imaging optic to map a specimen plane with a remote focus. A mask at the remote focus defines at least one measuring area for making spectroscopic measurements while a separate viewing system simultaneously provides a wide field of view of the sample at higher magnification. The sample aperture, defines as 2T sterradians of solid angle surrounding each side of the specimen plane, is multiplexed between and among different functions--such as spectroscopic measurements and visual observations. The high numerical aperture possible using identical symmetrical aberration canceling (ISAC) optics facilitates the aperture multiplexing which has particular advantage in making reflectance measurements without any need for a significant loss of throughput efficiency.