Abstract:
A dispersion control fiber and a method of manufacturing a large size preform. The dispersion control fiber includes a core composed of SiO2, GeO2, and P2O5, and a cladding composed of SiO2, GeO2, P2O5, and Freon. The P2O5 content is selected not to exceed 10% total weight of a compound composing the core. The method of manufacturing a large size perform for a dispersion control fiber by an MCVD process includes depositing SiO2, GeO2, P2O5, and Freon in an inner periphery of a deposition tube to form a cladding layer, and depositing SiO2, GeO2, and P2O5 on an inner periphery of the cladding layer to form a core layer.
Abstract translation:一种分散控制纤维及其制造方法。 色散控制光纤包括由SiO 2,GeO 2和P 2 O 5组成的芯和由SiO 2,GeO 2,P 2 O 5和氟利昂组成的包层。 选择P2O5含量不超过构成核心的化合物的总重量的10%。 通过MCVD工艺制造用于分散控制光纤的大尺寸的方法包括在沉积管的内周中沉积SiO 2,GeO 2,P 2 O 5和氟利昂以形成包覆层,并将SiO 2,GeO 2和P 2 O 5沉积在 包层的内周,形成芯层。
Abstract:
Even if an optical fiber obtained by drawing a preform is exposed to hydrogen atmosphere, an OH peak in the optical fiber at wavelength of about 1385 nm hardly rises regardless of the condition of drawing.
Abstract:
A double-clad optical fiber includes a core, a multimode inner cladding layer disposed about the core, and a second cladding layer disposed about the inner cladding layer. The core includes an active material for absorbing pump radiation received by the inner cladding. The multimode inner cladding includes truncated regions including a first material, where the first material has an index of refraction that is different than the material of the inner cladding that surrounds said truncated regions, for promoting the scattering of pump radiation propagating in the multimode inner cladding for increasing the absorption of the pump radiation by the active material of the core. Particles can be distributed in soot deposited via Outside Vapor Deposition for forming the truncated regions in an optical fiber drawn from the preform.
Abstract:
A preform for a low loss fiber optic cable and method and apparatus for fabricating such a preform is provided. The method includes providing AlCl3 and CVD precursors and locally doping CaCl3. Alkali and/or alkaline earth fluxing agents can be introduced. The alkali and/or alkaline earths are doped along with the aluminum into the silica glass core.
Abstract:
The invention relates to a dispersion flattened fiber (DFF) with high negative dispersion and a manufacturing method thereof. The dispersion flattened fiber comprises a central core; ring-type cores and low refractive regions alternately formed outside the central core; a cladding surrounding outside the ring-type cores and low refractive regions; and a coating outside the cladding. Since the dispersion flattened fiber has the dispersion of −20 to −60, it has a wide range of application and can be used for various purposes in the field of optical telecommunication.
Abstract:
The present invention provides a method of fabricating rare earth doped preforms and optical fibres by a combination of modified chemical vapour deposition (MCVD) process and solution doping technique said MCVD process is used to develop matched or depressed clad structure inside a silica glass substrate tube followed by deposition of porous silica soot layer containing GeO2, P2O5 or such refractive index modifiers by the backward deposition method for formation of the core and presintering the deposited particulate layer by backward pass with flow of GeCl4 and/or corresponding dopant halides, soaking the porous soot layer into an alcoholic/aqueous solution of RE-salts containing codopants such as AlCl3 in definite proportion, drying, oxidation, dehydration and sintering of the RE containing porous deposit and by collapsing at a high temperature to produce the preform followed by drawing the fibres by known technique to produce fibres with suitable core-clad dimensions and geometry.
Abstract:
A method of making an erbium-doped optical fiber for use in optical amplifiers according to the present invention includes the step of providing a substrate tube. High purity silica-based cladding layers are deposited on the inside of the tube. A core glass that includes silica, Al, a non-fluorescent rare-earth ion, Ge, Er, and Tm is then deposited in the tube. The non-fluorescent rare-earth ion may be La and the core may further include F. The tube is then collapsed to form a preform. Finally, the preform is drawn to yield optical fiber. The core glass may be substantially homogeneous. The core may include at least two regions, wherein one region contains a substantially different Er to Tm ratio than the other region. Said regions may be in an annular arrangement. The core of such a waveguide may be made with multiple MCVD passes, multiple sol-gel passes or with multiple soot deposition, solution doping, and consolidation passes.
Abstract:
The invention provides a method of making an optical fiber preform using a modified chemical vapor deposition process by flowing glass precursor gases through a preform tube for depositing glass material therein, and simultaneously flowing heavy water vapors through the preform tube for incorporating deuteroxyl groups into the glass material. Then, the preform tube is controllably heated so as to effect a collapse of the preform tube into a rod. Advantageously, optical fibers drawn from such preforms have an increased resistance to hydrogen and will not require passivation.
Abstract:
A GRIN fiber lens has a silica-glass core whose refractive index has a radial profile. The profile has a radial second derivative whose average magnitude in the core is less than about 1.7×10−6 microns−2 times the value of the refractive index on the axis of the GRIN fiber lens.
Abstract:
A double-clad optical fiber includes a core, a multimode inner cladding layer disposed about the core, and a second cladding layer disposed about the inner cladding layer. The core includes an active material for absorbing pump radiation received by the inner cladding. The multimode inner cladding includes truncated regions including a first material, where the first material has an index of refraction that is different than the material of the inner cladding that surrounds said truncated regions, for promoting the scattering of pump radiation propagating in the multimode inner cladding for increasing the absorption of the pump radiation by the active material of the core. Particles can be distributed in soot deposited via Outside Vapor Deposition for forming the truncated regions in an optical fiber drawn from the preform.