Abstract:
A fluid delivery method and apparatus implementing active phasing to actively restore the substantially exact mechanical positions of driven components in a delivery system in order to precisely reproduce the mechanical signature and hydraulic characteristics of the system from run to run without perturbing output flow. The delivery system is configured to intelligently drive pump pistons to a known position and to deliver fluid(s) at a known pressure, and includes a plurality of pump modules each including motor driven syringes having respective pistons configured to reciprocate under control of a control mechanism. Pump phasing is accomplished through a mechanism of compensation delivery of the syringes. An independent, motor-driven syringe of any given pump in a plurality of pumps in a system has the ability to act as a delivering syringe to maintain a prescribed output flow while one other syringe of each of the plurality of pumps is repositioned under load. With the delivering syringe maintaining output flow, the syringe which is repositioning, i.e. being phased, can substantially simultaneously arrive at a destination position and at a destination pressure.
Abstract:
A serial, dual piston high pressure fluid pumping system that overcomes the difficulties of gas in the fluid stream without the need for added mechanical valves or fluid paths. A bubble detection and recovery mechanism monitors compression and decompression volumes of the serially configured dual pump head pump, and the overall system delivery pressure. Bubble detection is effected by sensing a ratio of compression to decompression volume and determining if the ratio exceeds an empirical threshold that suggests the ratio of gas-to-liquid content of eluent or fluid in the system is beyond the pump's ability to accurately meter a solvent mixture. The magnitude of the ratio of compression to decompression volume indicates that either the intake stroke has a bubble or that the eluent has a higher-than-normal gas content. Once a bubble has been detected, recovery is effected by forcing the pump into a very high stroke volume with the compression and decompression stroke limits constrained to obtain the largest delivery stroke compression ratio that will expel a bubble or solvent that has detrimental quantities of gas.
Abstract:
The present invention is a sludge pump system which includes a means for monitoring operation of a sludge pump. The sludge pump includes a material cylinder and a piston moveable in the material cylinder. A pump drive moves the piston during working cycles which include a pumping stroke and a filling stroke. A pump valve mechanism connects the material cylinder to an outlet during pumping strokes and connects the material cylinder to an inlet during filling strokes. A means for monitoring operation of the pump is provided. The means for monitoring includes a means for sensing a first parameter related to operation of the pump drive, a means for sensing a second parameter indicative of operation of the piston, and a means for determining errors in the operation of the pump based upon the first parameter and the second parameter.
Abstract:
A pump control interface for use in a diaphragm pump including at least one diaphragm adapted to move between a suction stroke and a discharge stroke during operation of the pump. A diaphragm follower is connected for movement with the diaphragm during operation of the pump. A sensor mechanism is provided for sensing at least the position and rate of movement of the diaphragm by sensing the position and rate of movement of the diaphragm follower. In one embodiment, the control interface is provided as a rod interconnecting two diaphragms of a dual diaphragm pump for synchronous movement. A plurality of conductive targets are disposed on the rod, and a proximity switch is mounted adjacent to the rod, in order to produce pulsed output signals when in proximity with the conductive targets.
Abstract:
The invention relates in particular to measuring the delivery rate of a positive displacement pump comprising at least one piston (3) driven with reciprocating movement in a chamber (2), which chamber is connected to an inlet circuit (4) via an inlet valve (5) and to an outlet circuit (6) via a delivery valve (7). The number of cycles performed by the pump in unit time are counted, and simultaneously its volumetric efficiency is measured, thereby enabling its real delivery rate to be deduced. Its volumetric efficiency may be measured by means of position sensors (17, 18) detecting the closure and opening instants of the delivery valve, with another sensor determining the instants at which the piston (3) passes through its end positions.
Abstract:
A fluid pump mechanism for delivering a smooth output of fluids to a system utilizing at least one piston in a chamber reciprocative therewithin. The piston has strokes that fill and empty the chamber in conjunction with the action of valve means located at the inlet and outlet of the chamber. Motive means causes reciprocation of the piston within the chamber. Control means is also included for minimizing the time during the piston cycle in which the piston is not emptying the chamber. The invention's scope also encompasses a pressure metering device for a fluid forcing means motivated by an electrical motor.
Abstract:
Provided for may be a motor speed control apparatus for use with a piston pump. The piston may be adapted to create a plurality of compressions and the piston may have a compression path and a decompression path. Further, the piston cylinder may include a proximal end, a distal end, and a piston length. The piston cylinder may have a proximal threshold position and a distal threshold position. In an embodiment, the apparatus includes a proximal and a distal hall effect sensor. The apparatus may comprise a computer, wherein instructions instruct the piston to decelerate at the distal threshold position during the compression path and the proximal threshold position during the decompression path, and/or wherein the computer executable instructions instruct the piston to accelerate at the distal threshold position during the decompression path and the proximal threshold position during the compression path.
Abstract:
An apparatus and a method may control a compressor. The apparatus may control a motor (included in a compressor) such that the motor quickly repeats turn-on and turn-off operations in a cooling power supply time period/section, thereby enabling the compressor to compress refrigerant in the cooling power supply time period/section. Thus, cooling power of a refrigerator may change while the compressor operates with maximum efficiency.
Abstract:
A double-action piston pump of an application system for applying a fluid medium to a substrate, wherein the piston pump has a piston which is movable between a first reversal point and a second reversal point for delivering the fluid medium, wherein on reaching the first reversal point and the second reversal point, the movement direction of the piston is reversed, wherein during an output period, the fluid medium is output by means of an output device, and during an interruption period, an output of the fluid medium by means of the output device is interrupted, wherein during the interruption period, the movement direction of the piston is reversed, wherein on reversal of the movement direction during the interruption period, the piston is situated at an intermediate position between the first reversal point and the second reversal point.
Abstract:
A micro-metering device with a constant flow rate, including a rotary shear valve, a mounting seat, a rotation drive assembly, an injection drive assembly and a controller. The rotary shear valve includes a valve main body and a valve spool. The valve main body is provided with a main flow channel and a plurality of branch flow channels. The valve spool is rotatably arranged inside the valve main body, and is configured to communicate the main flow channel with different branch flow channels. A pressure sensor is provided inside the valve main body, and is communicated with the main flow channel. The pressure sensor is configured for detecting a pressure inside the main flow channel. Whether the switching of the liquid path is correct is determined according to the pressure in the main flow channel.