Abstract:
An optical characteristic measuring apparatus includes: a light source section which sweeps wavelengths of a first input light and a second input light respectively, frequencies of the first and second input lights being different from each other and polarized states of the first and second input lights being perpendicular to each other, and outputs the first and second input light; an interference section which inputs one branched light of the first and second input lights to a measuring object, makes output light from the measuring object interfere with other branched light of the first and second input lights, and outputs a plurality of interference lights; a plurality of light receiving sections which are respectively provided for the interference lights, receives the interference lights respectively, and outputs signals in accordance with optical powers of the interference lights respectively; and a low-pass filter for filtering the outputted signals.
Abstract:
A Fabry-Perot cavity filter includes a first mirror and a second mirror. A gap between the first and the second mirror monotonically varies as a function of width of the filter. This filter may be used with photodetector and a channel selection filter in an optical device, such as a spectrum analyzer. The channel selection filter may be a metal nanooptic filter array which includes plurality of subwavelength apertures in a metal film or between metal islands.
Abstract:
A polarization filter utilizing Brewster's angle. The polarization filter includes a stimulus receiving body having more than one facet. At least two of the more than one facet being arranged at Brewster's angle (relative to the plane of polarization of the incident stimulus) and positioned in different radial orientations (relative to the incident stimulus) which are adapted to provide differential transmission or reflection of polarized electro-magnetic radiation coming from a common source.
Abstract:
A measuring apparatus is disclosed which includes an interferometer for measuring a wavefront of light transmitted through a test object by interference between light under test passed through the test object and reference light, and measures a polarization characteristic of the test object. The measuring apparatus has a measuring unit for measuring a polarization characteristic matrix in a pupil plane of the test object while the reference light is blocked or fringe scan is performed.
Abstract:
An ellipsometer with a variable retarder, which introduces a spatial dependence in the beam, includes a polarizing beam splitter to produce two beams with orthogonal polarization states. The beam splitter may be, e.g., a polarizing displacer or polarizing beam splitter. The intensities of the two beams are measured, e.g., using separate detectors or separate detector elements in an array. The intensity from the two beams may be summed and used as a reference to normalize intensity of the produced beam.
Abstract:
An optical inspection device includes a light source for generating a probe beam. The probe beam is focused onto a sample to create a spread of angles of incidence. After reflecting from the sample, the light is imaged onto a two dimensional array of photodetectors. Prior to reaching the detector array, the beam is passed through a rotating compensator. A processor functions to evaluate the sample by analyzing the output of the photodetectors lying along one or more azimuthal angles and at different compensator positions.
Abstract:
A passive interferometer chemical sensor and photopolarimeter communicator includes collector and collimator optics, shared solid-state interferometer/photopolarimeter phase-modulation optics, and a lens imager system. The passive interferometer locates, identifies, and tracks an infrared-absorbing vapor in an open panorama by measuring vibration spectrum moiety. The communicator includes a communications beam that is modulated by the shared projected into the same object space from which chemical imaging is preformed. The communications beam provides detection data that is binary encrypted by Mueller matrix-element encoding.
Abstract:
The degree of polarization of an optical signal is measured by a polarimeter and used for providing a feedback signal to adjust adaptive optics of a polarization mode dispersion compensator. The polarization properties of the polarimeter are determined with high accuracy to match the polarimeter through calibration and used to produce the feedback signal.
Abstract:
A polarization state detecting system includes a first dividing device for dividing incident light into two light beams having the same polarization state as the incident light, a detector for detecting one of the two light beams from the first dividing device, through a polarizer, and an acquisition device for acquiring information regarding the polarization state of the incident light on the basis of an output of the detector. The first dividing device includes a first element, a second element and a third element. The second element is disposed so that a p-polarization component reflected by the first element is reflected by the second element as an s-polarization component. The third element is disposed so that a p-polarization component transmitted through the first element is reflected by the third element as an s-polarization component, and one of the two light beams is light reflected by the first element and reflected by the second element, while the other of the two light beams is light transmitted through the first element and transmitted through the third element.
Abstract:
An ellipsometer includes an optical component and a detector. The optical component has two birefringent parts in optical communication via a border surface. Light incident on the border surface is split into two reflected and two transmitted components. The detector is configured to measure a property of at least three out of the four components. Based on the measured properties, a state of polarization of the incident light may be determined.