Abstract:
A method for performing separation assays of biochemical samples includes computing a quality metric based on peak data produced during the separation run. The quality metric is the basis for selecting a subsequent step in the assay, including whether to re-run the separation when the quality metric indicates a low quality separation run. In a preferred embodiment, the quality metric is computed based on a peak resolution metric indicative of the peak resolution of the sample peaks in the data and a signal-to-noise ratio of the data. When a co-migrating standard is included in the separation run, the quality metric is further based on the degree of migration linearity of the reference peaks produced by the standard. The method was reduced to practice in separations to size and sort DNA fragments in high-throughput capillary array electrophoresis separations.
Abstract:
A method of analyzing clinically relevant sample liquids and suspensions is such that where infrared spectra of dried samples are generated and evaluated using a multivariate evaluation procedure. In the evaluation procedure, the samples to be analyzed are assigned to classes. The evaluation procedure is trained with samples of known classes to adjust the parameters of the evaluation procedures such that samples of unknown classification can be assigned to known classes. In an advantageous manner, the infrared spectra can be generated by a transmittance measurement on a dried film of the sample.
Abstract:
An improved method and apparatus are disclosed for processing spectral data to remove undesired variations in such data and to remove interfering information present in the data. The method land apparatus corrects multiplicative effects present in the spectral data. Additive and interferent contributions can be corrected as well. In one aspect of the method, coefficients for a selected appropriate model are applied to the input spectral data based on first and second reference spectra. The spectral data are then corrected based on the estimated coefficients at least as to multiplicative errors for producing a linear additive structure for use in calibration, validation and determination by linear multivariate analysis. The method and apparatus will improve the accuracy of spectral data structures derived from measurements Using spectroscopy, chromatography, thermal analysis, mechanical vibration and acoustic analysis, rheology, electrophoresis, image analysis and other analytical technologies producing data of similar multivariate nature.
Abstract:
An instrument for chemical spectroscopy with imaging capabilities. A lightsource produces an array of light beams, each of which is made up of a plurality of discrete wavelengths. The array of light beams are modulated by an interferometer, then directed through a sample to an array of detectors. The sample may be a chemical mixture (e.g. a fuel stream in a manufacturing facility) or a body part (e.g. breast, limb, or head). An array of laser or light-emitting diodes provides light at the desired wavelengths and high intensity. The set of wavelengths is selected for a particular kind of analysis, and a specific set of possible absorbing species to be detected. The different wavelengths are guided optically (using fiber optics, lenses, and/or mirrors) into a single lightbeam, or an array of lightbeams. This light is then directed through the sample and onto a detector. The lightsource and detector, or lightsource alone, may be rastered if necessary to form an image. Individual lightbeams in an array may be modulated, polarized, or both so as to improve resolution. The signal from the detector undergoes a Fast Fourier Transform to produce a near-infrared absorption spectrum as a function of wavelength. The absorption spectra can be used to produce an image of the spacial distribution of detected species within the sample. Either the lightsource or detectors can be placed on the end of a probe or catheter for imaging through the wall of a hollow sample.
Abstract:
The present invention is a method for improving the estimation of physical properties of a material, based on the infrared spectrum of the material, by concatenating additional data obtained from other measurement techniques to the infrared spectrum to fill the voids in the spectral data resulting from a lack of sensitivity by infrared spectrometers to trace compounds in the material. The augmented spectral data then is used to produce a calibration model for estimating the physical properties of the material.
Abstract:
The system consists of a light source, a monochrometer, one or more etalons or other stable samples, a detector and a computer to store reference spectra, provide a read out indicative of the spectrum, and to change the instrument response. A transfer function is used to recharacterize the instrument's wavelength position and intensity response to match the actual spectrum with the standard spectrum. In one embodiment, the etalon is used in series with the unknown sample. A spectrum of the sample and etalon is created and is extracted from the spectrum of the sample alone to provide the actual spectrum of the instrument response to the etalon alone. The actual spectrum can then be compared to the standard spectrum and the instrument response recharacterized accordingly.
Abstract:
A quantitative analytical method with spectrometric analysis, wherein a sample is irradiated with light, and a plurality of ingredients contained in the sample to be measured are quantitatively determined on the basis of absorptivities at a plurality of appointed wave number points in an absorption spectrum obtained at that time. An assumed concentration-operating matrix is obtained from a combination of reference spectra for a plurality of ingredients, of which the concentrations have been known, and is previously prepared. The concentrations of the respective ingredients to be measured are calculated by the use of the concentration-operating matrix, thereby capable of carrying out a quantitative analysis in a short time with high accuracy.
Abstract:
Certain selected wavelengths in the near infrared spectra permit analysis of weight percent, volume percent, or even mole percent of each component, e.g. PIANO (paraffin, isoparaffin, aromatic, napthenes, and olefins), octane (preferably research, motor or pump), and percent of various hydrocarbons, e.g. alpha olefins. Analysis can be nearly continuous analysis on-line or at-line, as well as batch analysis, e.g. in a quality control laboratory. Preferably the NIR data is converted to a second derivative of the spectra and multiple linear regression performed to model the individual PIANO concentrations, and to predict physical properties of fuel blending components, e.g. research octane of reformate, etc.
Abstract:
A method for obtaining quantitative compositional information from a multilayer web containing a highly light-scattering component. The compositional information is obtained by measuring and analyzing the transmitted or diffusely reflected infrared spectrum. The method allows for separately determining the moisture content of hydrophobic (non-hydrogen bonding) layers and hydrophilic (hydrogen bonding) layers of multilayer webs. The separate measurements of moisture content can be made simultaneously in moving webs having both types of layers present. The method is used to determine further compositional information such as the thickness of the individual support and gelatin containing layers, plasticizer content, retained solvents content, and the presence of other components in webs, especially photographic webs.
Abstract:
An analytical instrument, for example an atomic absorption spectrophotometer, comprises means for measuring the absorbance of a plurality of standards of known concentration (100) and plotting the measured absorbance against concentration (101). A straight line is fitted to the plotted points (102) and a quality co-efficient calculated (103). If the quality co-efficient is acceptable (104) the calibration line is used for measurement of samples (105). If not, then the slope of the line joining each point to the origin is determined and if the slopes are random (107) then a robust regression technique is used to fit the calibration line (108). If outliers are then detected (109) it is determined which points are outliers (110) and appropriate action taken, for example to restrict the range if the last point(s) is/are outliers (111). If the slopes determined in step (106) are not random, then, provided more than fourpoints remain (113), the slope of each point with respect to the first point is determined (114). If they are again not random (115), then a curved calibration line is diagnosed while if they are random, a straight line not passing through the origin is diagnosed (117). In atomic absorption spectroscopy a straight line not passing through the origin indicates a problem with the blank solution, for example, contamination.