Abstract:
A robot bumper including a bumper body having a forward surface and a top surface angling away from the forward surface. The bumper body conforms to a shape of a received robot chassis. The robot bumper also includes a force absorbing layer disposed on the bumper body, a membrane switch layer comprising a plurality of electrical contacts arranged along the top surface of the bumper body, and a force transmission layer disposed between the force absorbing layer and the membrane switch layer. The force transmission layer includes a plurality of force transmitting elements configured to transmit force to the membrane switch layer.
Abstract:
A method for energy management in a robotic device includes providing a base station for mating with the robotic device, determining a quantity of energy stored in an energy storage unit of the robotic device, and performing a predetermined task based at least in part on the quantity of energy stored. Also disclosed are systems for emitting avoidance signals to prevent inadvertent contact between the robot and the base station, and systems for emitting homing signals to allow the robotic device to accurately dock with the base station.
Abstract:
A mobile robot configured to travel across a residential floor or other surface while cleaning the surface with a cleaning pad and cleaning solvent is disclosed. The robot includes a controller for managing the movement of the robot as well as the treatment of the surface with a cleaning solvent. The movement of the robot can be characterized by a class of trajectories that achieve effective cleaning. The trajectories include sequences of steps that are repeated, the sequences including forward and backward motion and optional left and right motion along arcuate paths.
Abstract:
A cleaning robot includes a non-circular main body, a moving assembly mounted on a bottom surface of the main body to perform forward movement, backward movement and rotation of the main body, a cleaning tool assembly mounted on the bottom surface of the main body to clean a floor, a detector to detect an obstacle around the main body, and a controller to determine whether an obstacle is present in a forward direction of the main body based on a detection signal of the detector, control the rotation of the main body to determine whether the main body rotates by a predetermined angle or more upon determining that the obstacle is present in the forward direction, and determine that the main body is in a stuck state to control the backward movement of the main body if the main body rotates by the predetermined angle or less.
Abstract:
An autonomous coverage robot includes a chassis having forward and rearward portions and a drive system carried by the chassis. The forward portion of the chassis defines a substantially rectangular shape. The robot includes a cleaning assembly mounted on the forward portion of the chassis and a bin disposed adjacent the cleaning assembly and configured to receive debris agitated by the cleaning assembly. A bin cover is pivotally attached to a lower portion of the chassis and configured to rotate between a first, closed position providing closure of an opening defined by the bin and a second, open position providing access to the bin opening. The robot includes a body attached to the chassis and a handle disposed on an upper portion of the body. A bin cover release is actuatable from substantially near the handle.
Abstract:
A fall-proof and anti-collision vacuum cleaner is disclosed in the present application, which comprises a main body, a driving device, a collision baffle and an elastic element. The collision baffle comprises a left side portion, a right portion and a middle portion for connecting the left portion and the right portion, at least one sensor is disposed on the outer edges of the left side, right side and middle portions respectively, the at least one sensor is electrically connected to the driving means, a plurality of shading parts are disposed on the main body corresponding to the positions of the sensors for sheltering the sensors, each of the sensors has three working positions, in the first working position, the sensors receive the feedback signals from the support below the main body, in the second working position, the sensors are sheltered by the shading parts, and in the third working position, the sensors fail to receive any signals within the sensing range thereof. The collision baffle of the invention has less movement track, improved sensitivity as well as the function of fall-proof.
Abstract:
The self-propelled cleaner (1) of the present invention includes an event detecting section (101) for detecting an event which relates to cleaning and has occurred in the cleaner, a feeling selecting section (201) for selecting, from a plurality of options, an operation mode with which the cleaner carries out an operation in response to the event, in accordance with measured information which relates to the cleaning and is measured by the cleaner, and a response operation control section (301) for controlling the cleaner to carry out the operation based on the operation information which is associated with the event and the operation mode.
Abstract:
The present description relates to a robot cleaner and to a method for controlling the same, which involve generating a map of an area to be cleaned in accordance with a travel mode command, and performing a cleaning operation by avoiding obstacles on the basis of the generated map upon receipt of a cleaning mode command. For this purpose, the robot cleaner of the present invention comprises: a travel unit which travels around the area to be cleaned upon receipt of the travel mode command; a detection unit which detects an object located in the area to be cleaned during travel performed in accordance with the travel mode command; and a control unit which generates a map of an area to be cleaned on the basis of the information on the location of an obstacle, if the detected object is the obstacle, and controls a cleaning operation on the basis of the generated map upon receipt of a cleaning mode command.
Abstract:
A cleaning robot may have a body, a moving unit provided on the body to move the body in a cleaning space, a cleaning unit provided on the body to clean a floor of the cleaning space, a floor image obtaining unit configured to obtain a floor image of the cleaning space, and a control unit configured to determine if foreign substance is present on the floor of the cleaning space based on the floor image, and control the moving unit to move the body to a position of the foreign substance, in which the cleaning robot, by obtaining an image of a floor to be cleaned, detects the foreign substance that is not positioned on a moving track of the cleaning robot, and when the foreign substance is detected, moves to the position of the foreign substance to perform a cleaning.
Abstract:
An autonomous coverage robot includes a chassis having forward and rearward portions. A drive system is mounted to the chassis and configured to maneuver the robot over a cleaning surface. A cleaning assembly is mounted on the forward portion of the chassis and has two counter-rotating rollers mounted therein for retrieving debris from the cleaning surface, the longitudinal axis of the forward roller lying in a first horizontal plane positioned above a second horizontal plane on which the longitudinal axis of the rearward roller lies. The cleaning assembly is movably mounted to the chassis by a linkage affixed at a forward end to the chassis and at a rearward end to the cleaning assembly. When the robot transitions from a firm surface to a compressible surface, the linkage lifts the cleaning assembly from the cleaning surface.