Abstract:
Embodiments of unmanned aerial rescue systems are disclosed, which may comprise: a frame or chassis, a landing member, a control system, a propulsion system, a propulsion system support member, a propulsion system orientation mechanism, a rotor shield or protector, a sealed equipment container, a cover or shroud, an equipment carrier, an equipment release mechanism, a navigation system, a sensor system, a sound system, a light system, a data communication system, an emergency equipment system, and a power management system. In some embodiments, a parabolic shroud increases the performance of sensor systems of the unmanned aerial rescue system, such as sound and light systems.
Abstract:
A service unmanned aerial vehicle (UAV) includes a flight system, a status component, a navigation system, and a surveillance component. The flight system is for flying the service UAV. The status component is configured to determine that a first UAV is disabled. The navigation system is configured to fly the service UAV to a landing location of the first UAV in response to the status component determining that the first UAV is disabled. The surveillance component is configured to observe the first UAV and an area surrounding the first UAV.
Abstract:
A rotorcraft including a fuselage, one or more motor-driven rotors for vertical flight, and a control system. The motors drive the one or more rotors in either of two directions of rotation to provide for flight in either an upright or an inverted orientation. An orientation sensor is used to control the primary direction of thrust, and operational instructions and gathered information are automatically adapted based on the orientation of the fuselage with respect to gravity. The rotors are configured with blades that invert to conform to the direction of rotation.
Abstract:
A system including an aerial vehicle having an airframe and a power source onboard the aerial vehicle, wherein the aerial vehicle includes a landing gear structure having a first electrical contact and a second electrical contact, and a charging station having a first electrical contact and a second electrical contact, wherein the aerial vehicle is programmed to dock with the charging station when the power source is in need of recharging, the docking being a mechanical engagement between the first electrical contact and the second electrical contact of the aerial vehicle with the first electrical contact and the second electrical contact of the charging station is provided. A method for continuous surveillance utilizing the aerial vehicles and charging stations is also provided.
Abstract:
Systems, devices, and methods for a transformable aerial vehicle are provided. In one aspect, a transformable aerial vehicle includes: a central body and at least two transformable frames assemblies respectively disposed on the central body, each of the at least two transformable frame assemblies having a proximal portion pivotally coupled to the central body and a distal portion; an actuation assembly mounted on the central body and configured to pivot the at least two frame assemblies to a plurality of different vertical angles relative to the central body; and a plurality of propulsion units mounted on the at least two transformable frame assemblies and operable to move the transformable aerial vehicle.
Abstract:
Systems, methods, and devices are provided for providing flight response to flight-restricted regions. The location of an unmanned aerial vehicle (UAV) may be compared with a location of a flight-restricted region. If needed a flight-response measure may be taken by the UAV to prevent the UAV from flying in a no-fly zone. Different flight-response measures may be taken based on the distance between the UAV and the flight-restricted region and the rules of a jurisdiction within which the UAV falls.
Abstract:
In one embodiment, an aerial collection system includes an image collection field vehicle that travels at street level and an image collection aerial vehicle that travels in the air above the street. The aerial vehicle collects image data including at least a portion of the field vehicle. The field vehicle includes a marker, which is identified from the collected image data. The marker is analyzed to determine an operating characteristic of the aerial vehicle. In one example, the operating characteristic in the marker includes information for a flight instruction for the aerial vehicle. In another example, the operating characteristic in the marker includes information for the three dimensional relationship between the vehicles. The three dimensional relationship is used to combine images collected from the air and images collected from the street level.
Abstract:
A method for optically acquiring a wind turbine for monitoring purposes with the aid of an aircraft, in particular a manned or unmanned rotorcraft, which has at least one camera installed thereon, wherein the wind turbine comprises a plurality of rotor blades, the surface of which is scanned within the scope of the method.
Abstract:
A service unmanned aerial vehicle (UAV) includes a flight system, a status component, a navigation system, and a surveillance component. The flight system is for flying the service UAV. The status component is configured to determine that a first UAV is disabled. The navigation system is configured to fly the service UAV to a landing location of the first UAV in response to the status component determining that the first UAV is disabled. The surveillance component is configured to observe the first UAV and an area surrounding the first UAV.
Abstract:
Dynamically establishing a temporary safe evacuation route away from an unsafe situation using unmanned vehicles. The temporary safe evacuation route is determined based on real-time information regarding the unsafe situation. A network of unmanned vehicles are deployed and positioned at determined points along the safe evacuation route. Guidance is provided to the network of unmanned vehicles for display along the safe evacuation route by the unmanned vehicle to aid people in evacuating from the unsafe situation. Information in real time regarding the unsafe situation may be received from the unmanned vehicles. Based on the information received, the safe evacuation route may be adjusted.