Abstract:
A solar relay aircraft system includes a solar relay aircraft having an upper surface, and a lower surface, and equipped with a solar radiation receiver on said lower surface and capable of converting solar energy to electrical energy. An electric motor in electrical connection with said solar radiation receiver to receive the electrical energy and drives a propeller to propel the solar relay aircraft. A number of ground-based reflector arrays include a plurality of reflecting mirrors for receiving solar radiation from the sun and direct the solar radiation from the sun towards the solar relay aircraft.
Abstract:
Electric aircraft, including in-flight rechargeable electric aircraft, and methods of operating electric aircraft, including methods for recharging electric aircraft in-flight, and method of deploying and retrieving secondary aircrafts.
Abstract:
Disclosed are an unmanned aerial vehicle, a charging station, and an automatic charging system for an unmanned aerial vehicle including the same. The unmanned aerial vehicle includes: a main body which includes a plurality of rotors, and is capable of flying and vertical taking off and landing by the rotors; a battery which is mounted in the main body for supplying power and is chargeable; a landing gear which includes a first charging terminal and a second charging terminal having different polarities and electrically connected to the battery, and is provided at a lower part of the main body; and a controller configured to control the main body.
Abstract:
A base station for automated battery pack or payload exchange and methods for using the same. The base station provides a landing surface for receiving a mobile platform and includes a manipulator controlled by a manipulator compartment for accessing resource storage. The base station is operable to ascertain a location of the mobile platform on the landing surface and move the manipulator to the mobile platform. Thereby, the base station system advantageously accommodates low-accuracy landing of the mobile platform and further enables extended and autonomous operation of the mobile platform without the need for user intervention for exchanging battery packs and payloads.
Abstract:
A charging apparatus for unmanned aerial vehicles and a charging method thereof. The charging apparatus includes: a transmit coil provided to a charging station and generating a magnetic field; a reception coil generating induced electromotive force according to variation of magnetic flux of the transmit coil; a reception coil adjuster adjusting at least one of an inclination and an orientation of the reception coil; and a controller controlling at least one of the inclination and the orientation of the reception coil by controlling the reception coil adjuster according to magnitude of the induced electromotive force generated in the reception coil by the magnetic field generated in the transmit coil.
Abstract:
A computer-implemented method of communicating with an unmanned aerial vehicle includes transmitting a first message via a communications transmitter of a lighting assembly for receipt by an unmanned aerial vehicle. The first message includes an identifier associated with the lighting assembly, and the lighting assembly is located within a proximity of a roadway. The method also includes receiving a second message from the unmanned aerial vehicle via a communications receiver of the lighting assembly. The second message includes an identifier associated with the unmanned aerial vehicle. The method further includes transmitting a third message via the communications transmitter of the lighting assembly for receipt by the unmanned aerial vehicle. The third message includes an indication of an altitude at which the unmanned aerial vehicle should fly.
Abstract:
A capturing hook for engaging a cable during capture and release of an aerial vehicle may comprise a first and second gate pivotally supported at their first ends by a base portion and each being movable between a closed position and an open position, but spring-biased to the closed position. The capturing hook may further include a latch device comprising a movable locking part biased by a return spring to a locked position to lock the second gate in the closed position.
Abstract:
A system and method for repowering an unmanned aircraft system is disclosed. The system and method may comprise use of a utility transmission system configured to function as power system/source for UAV/aircraft and UAV/aircraft configured to interface with the power source/system. Systems and methods provide access and for administrating, managing, and monitoring access and interfacing by UAV/aircraft with the power system/source. UAV/aircraft system can be configured and operated/managed to interface with and use the power system/source (e.g. network of power lines from a utility transmission system) to enhance range and utility (e.g. for repowering and/or as a flyway or route). The system comprises an interface between the aircraft and the power source for power transfer; a monitoring system to monitor the aircraft; and an administrative/management system to manage interaction/transaction with the aircraft. The power source for power transfer may be a power line; power transfer to the aircraft may be by wireless power transfer (capacitive or inductive or optical) of an aircraft while at or operating along the power line. The aircraft may comprise a connector configured to interface with the power source/line; the power line may be configured to interface with the connector/aircraft. Data communications between the aircraft and system may be facilitated for interaction/transaction.
Abstract:
Embodiments of the present invention provide an alternative distributed airborne transportation system. In some embodiments, a method for distributed airborne transportation includes: providing an airborne vehicle with a wing and a wing span, having capacity to carry one or more of passengers or cargo; landing of the airborne vehicle near one or more of passengers or cargo and loading at least one of passengers or cargo; taking-off and determining a flight direction for the airborne vehicle; locating at least one other airborne vehicle, which has substantially the same flight direction; and joining at least one other airborne vehicle in flight formation and forming a fleet, in which airborne vehicles fly with the same speed and direction and in which adjacent airborne vehicles are separated by distance of less than 100 wing spans.
Abstract:
The earth's magnetic field has not been mined as a source of energy. With average field strength of 0.5×10−4 Tesla around the world it is easy to understand why. A disruptive technology is needed to mine the earth's magnetic field. Such a technology, graphene, is now at an early stage of development with excellent properties in the form of high conductivity, low resistivity, durable, light weight, low cost sheets. Multiple sheets of graphene provide a significant multiplier to earth's magnetic field yielding a feasible source of ecologically clean power. Graphene based EcoCharge units can be driven by electric motors putting graphene in motion to mine the earth's magnetic field. Estimates show that for a Solar Impulse 2 like electric plane, eight EcoCharge units weighing 64 lbs generate 60 kW RMS continuously replacing 3,000 lbs of photovoltaic cells generating 50 kW RMS during the day only.