Abstract:
An anti-submarine warfare system includes an unmanned “sea-sitting” aircraft housing submarine detecting equipment, the aircraft including a body portion having a catamaran configuration adapted for stably supporting the body portion when sitting in water, the body portion including a fuselage and laterally disposed sponsons connected to the fuselage via platforms, and submarine detecting equipment housed within the fuselage and adapted to be electronically linked to sonobuoys disposed in adjacent water locations.
Abstract:
A compact, aerodynamic wing assembly constructed and arranged so as to withstand a force due to acceleration in at least one direction includes at least two wing segments, each of the wing segments having a span-wise axis, and a airfoil cross section normal to the span axis. The wing segments are preferably disposed mutually adjacent and end to end. For each pair of wing segments, the wing further includes a pivot assembly fixedly attached to the wing segments at an end of each of the wing segments along the span-wise axis. The pivot assembly forms an articulation axis for relative movement between each the pair of wing segments, such that the wing assembly converts, upon a predetermined stimulus, from a stowed configuration characterized by nested wing segments, to a deployed configuration characterized by a substantially uninterrupted aerodynamic surface. The wing assembly is preferably constructed and arranged to withstand forces due to acceleration in at least two directions, including 15,000 g's forward and 4,000 g's rebound accelerations. The invention further comprises a flying structure constructed and arranged so as to withstand an acceleration force directed along a main axis. The flying structure includes a body disposed about the main axis, and at least one wing assembly pivotally mounted to the body. The wing assembly is constructed and arranged so as to convert, upon a predetermined stimulus, from a stowed configuration characterized by nested wing segments, to a deployed configuration characterized by a substantially uninterrupted aerodynamic surface.
Abstract:
A method and system for delivery ordnance to a target via a remotely piloted or programmable aircraft including a yaw-to-turn guidance system, a deployment and launching system and packaging for the aircraft are disclosed.
Abstract:
An unmanned air vehicle (UAV) having a fuselage, a foldable propulsion means to generate thrust leading to the UAV movement, a driving means to drive the propulsion means and a plurality of flight control surfaces actuators are further included. The UAV further includes at least one pair of foldable wings where the rear portion of the wings is pivotally attached to the fuselage. The wings having at least one roll control surface hinged to at least one of the foldable wings. At least a pair of tail stabilizers having ruddervators flight control surfaces hinged to the tail stabilizers. In a fully extended position or in ready to fly state position, each of the foldable wings are deployed perpendicular to one another and perpendicular to the fuselage to form an offset-x shaped wings, and in a stowed position, each of the wings are positioned parallel to one another and positioned parallel to the fuselage.
Abstract:
A deployable airfoil airborne body such as missiles, bombs, guided projectiles, MALDs and UAVs includes first and second rigid airfoil sections stowed end-to-end along the airborne body. The airfoil sections have first and second interior edges of equal lengths, abutting ends connected at the first and second interior edges by a free-floating pivot, a distant end of the first rigid airfoil section coupled to a fixed pivot on the airborne body, and a distant end of the second rigid airfoil section having a translation point. The first and second rigid airfoil sections are configured to rotate in opposite directions to move the translation point axially along the airborne body to abut the fixed pivot driving the free-floating pivot radially away from the airborne body to join the first and second interior edges in a deployed position transverse to the airborne body to form a rigid airfoil
Abstract:
An Unmanned Aerial Vehicle (UAV) has a fuselage, a rotor system, and a wing configured for selective positioning during flight of the UAV to a fully deployed position, a fully stowed position, and to positions between the fully deployed position and the fully stowed position.
Abstract:
A vertical takeoff and landing (VTOL) unmanned aircraft system (UAS) may be uniquely capable of VTOL via a folded wing design while also configured for powered flight as the wings are extended. In a powered flight regime with wings extended, the VTOL UAS may maintain controlled powered flight as a twin pusher canard design. In a zero airspeed (or near zero airspeed) nose up attitude in a VTOL flight regime with the wings folded, the unmanned aircraft system may maintain controlled flight using main engine thrust as well as vectored thrust as a vertical takeoff and landing aircraft. An airborne transition from VTOL flight regime to powered flight and vice versa may allow the VTOL UAS continuous controlled flight in each regime.
Abstract:
A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.
Abstract:
An unmanned air vehicle is provided. The unmanned air vehicle includes a frame having a center portion connecting two substantially parallel transversely spaced apart ele-wings. The ele-wings may store batteries and rotate along a forward axis to provide lift during a transition from vertical flight to linear flight. The landing gear may be connected to the ele-wings and configured to change pitch of the ele-wing to ensure stable flight during flight mode transition. A plurality of propellers, each having propeller drive motors, are attached to the frame and able to rotate from parallel position, relative to the center portion, for vertical flight to a perpendicular position, relative to the center portion, for linear flight. The propeller drives rotate on its axis and may be configured to propel the vehicle in a ground and flight mode.