Abstract:
The X-ray tube having a rotating and linearly translating anode includes an evacuated shell having a substantially cylindrical anode rotatably mounted therein. The substantially cylindrical anode may be rotated through the usage of any suitable rotational drive, and the substantially cylindrical anode is further selectively and controllably linearly translatable about the rotating longitudinal axis thereof. A cathode is further mounted within the evacuated shell for producing an electron beam that impinges on an outer surface of the substantially cylindrical anode, thus forming a focal spot thereon. X-rays are generated from the focal spot and are transmitted through an X-ray permeable window formed in the evacuated shell.
Abstract:
The X-ray tube having a rotating and linearly translating anode includes an evacuated shell having a substantially cylindrical anode rotatably mounted therein. The substantially cylindrical anode may be rotated through the usage of any suitable rotational drive, and the substantially cylindrical anode is further selectively and controllably linearly translatable about the rotating longitudinal axis thereof. A cathode is further mounted within the evacuated shell for producing an electron beam that impinges on an outer surface of the substantially cylindrical anode, thus forming a focal spot thereon. X-rays are generated from the focal spot and are transmitted through an X-ray permeable window formed in the evacuated shell.
Abstract:
The present invention relates to an X-ray tube in which X-rays are generated by making electrons from an electron gun incident onto an X-ray target of an anode, disposed inside an anode housing unit, and the generated X-rays are taken out from an X-ray emission window. The anode has a straight main body and a protruding portion, extending along an axis line direction of the main body from a tip of the main body. An inclined surface, onto which the electrons emitted from the electron gun collide, and a pair of side surfaces, disposed in parallel while sandwiching the inclined surface, are formed on the protruding portion. A distance between the pair of side surfaces of the protruding portion is shorter than a width of the main body in the same direction as the distance.
Abstract:
A collimator includes a first plate having an aperture therein, the aperture configured to allow passage of a beam of x-rays from a source of a multi-spot source therethrough, and a second plate parallelly positioned with respect to the first plate and configured to receive and attenuate a first portion of the beam of x-rays passing through the aperture in the first plate, the second plate having an aperture therein configured to non-concentrically overlap the aperture in the first plate, to receive a second portion of the beam of x-rays passing through the aperture in the first plate, and to allow passage of the second portion of the beam of x-rays therethrough. A portion of the aperture in the first plate and a portion of the aperture in the second plate form a composite aperture parallel to the beam of x-rays, the composite aperture configured to allow passage of the second portion of the beam of x-rays through the first and second plates.
Abstract:
A differential phase-contrast X-ray imaging system is provided. Along the direction of X-ray propagation, the basic components are X-ray tube, filter, object platform, X-ray phase grating, and X-ray detector. The system provides: 1) X-ray beam from parallel-arranged source array with good coherence, high energy, and wider angles of divergence with 30-50 degree. 2) The novel X-ray detector adopted in present invention plays dual roles of conventional analyzer grating and conventional detector. The basic structure of the detector includes a set of parallel-arranged linear array X-ray scintillator screens, optical coupling system, an area array detector or parallel-arranged linear array X-ray photoconductive detector. In this case, relative parameters for scintillator screens or photoconductive detector correspond to phase grating and parallel-arranged line source array, which can provide the coherent X-rays with high energy.
Abstract:
An electron beam scanner includes a stationary source producing an electron beam and a detector positioned to partially circumscribe a scan field, the detector divided into a pair of detector rings arranged adjacent to one another and separated by a gap extending at least partially about a circumference of the detector. The electron beam scanner also includes a target arranged concentric with the detector and located opposite the detector across the scan field, the target having end portions circumferentially overlapping the detector and radially aligned with the gap between the detector rings, such that when the electron beam impinges on the target the target transmits radiation through the gap across the scan field to an associated section of the detector.
Abstract:
To be able to achieve further small-sized formation and light-weighted formation and to promote a sensitivity by further efficiently detecting a fluorescent X-ray or the like in an X-ray tube and an X-ray analyzing apparatus, there are provided a vacuum cabinet 2 inside of which is brought into a vacuum state and which includes a window portion 1 formed by an X-ray transmitting film through which an X-ray can be transmitted, an electron beam source 3 installed at inside of the vacuum cabinet 2 for emitting an electron beam e, a target T generating a primary X-ray X1 by being irradiated with the electron beam e and installed at inside of the vacuum cabinet 2 to be able to emit the primary X-ray X1 to an outside sample S by way of the window portion 1, and an X-ray detecting element 4 arranged at inside of the vacuum cabinet 2 to be able to detect a fluorescent X-ray and a scattered X-ray X2 emitted from the sample S and incident from the window portion 1 for outputting a signal including energy information of the fluorescent X-ray and the scattered X-ray X2.
Abstract:
An x-ray computed tomography apparatus has one anode ring in a vacuum housing surrounding an examination volume, wherein a focus of an x-ray source revolves on the anode ring to expose the examination volume with an x-ray beam from different directions, and a detector system arranged on a rotating frame that can rotate around a system axis. The detector system serves to detect the x-ray radiation exiting from the examination volume, wherein the detector system and the focus can rotate around the system axis synchronously and in the same rotation direction with a rotation angle offset by 180°. The apparatus also includes a computer to process the measurement values acquired by the detector system. The anode ring can be driven such that it rotates around the system axis, and the rotation direction of the anode ring and the rotation direction of the focus around the system axis are opposite while a rotation of the focus around the system axis ensues.
Abstract:
A modular x-ray source for an imaging system includes an electron source mounting plate, two or more electron sources each mounted on and electrically coupled to the electron source mounting plate, and a target block positioned proximately to the two or more electron sources. The source includes two or more targets mounted on and electrically coupled to the target block, each target positioned opposite a respective one of the two or more electron sources to receive a respective beam of electrons therefrom.
Abstract:
The present invention relates to an X-ray tube, having a structure enabling capturing of a clear magnified transmission image and enabling increase of a magnification factor of the magnified transmission image, and an X-ray source including the X-ray tube. In the X-ray tube, X-rays are generated by making electrons from an electron gun incident onto an X-ray target of an anode, disposed inside an anode housing unit, and the generated X-rays are taken out from an X-ray emission window. In particular, the anode has a straight main body and a protruding portion, extending along an axis line direction of the main body from a tip of the main body. An inclined surface, onto which the electrons emitted from the electron gun collide, and a pair of side surfaces, disposed in parallel while sandwiching the inclined surface, are formed on the protruding portion. A distance between the pair of side surfaces of the protruding portion is shorter than a width of the main body in the same direction as the distance.