Abstract:
An incident light meter on an autonomous vehicle receives ambient light and outputs an incident light measurement in response the ambient light. One or more image sensors of the autonomous vehicle image the environment of the autonomous vehicle. An exposure setting is generated at least in part on the incident light measurement. The one or more image sensors capture a digital image at the exposure setting.
Abstract:
An aerial vehicle including self-autonomous deployable arms and methods of deploying the vehicle are disclosed. The arms may include patterns located thereon that allow the arms to transition between wrapped, flat, and deployed configurations autonomously without the need for direct intervention by a user.
Abstract:
To provide a small flying object that is inexpensive and capable of stable flying. In order to solve the above problem, a representative example of the small flying object of the present invention includes an upper rotor that generates thrust by rotating, a lower rotor that is disposed below the upper rotor and rotates coaxially with the upper motor and in the opposite direction to the upper motor, and an inertia balancer that is connected to one of the rotors having a lower rotation speed during hovering among the upper rotor and the lower rotor, and rotates integrally with the one rotor. The inertia balancer compensates a difference between an angular momentum of the one rotor and an angular moment of the other rotor during hovering.
Abstract:
Embodiments described herein may help to provide support via a fleet of unmanned aerial vehicles (UAVs). An illustrative medical-support system may include multiple UAVs, which are configured to provide support for a number of different situations. Further, the medical-support system may be configured to: (a) identify a remote situation, (b) determine a target location corresponding to the situation, (c) select a UAV from the fleet of UAVs, where the selection of the UAV is based on a determination that the selected UAV is configured for the identified situation, and (d) cause the selected UAV to travel to the target location to provide support.
Abstract:
Various embodiments of the present disclosure provide a helicopter-mediated system and method for launching and retrieving an aircraft capable of long-distance efficient cruising flight from a small space without the use of a long runway.
Abstract:
An unmanned aerial vehicle (UAV) includes a body that supports breakaway components. One component is a battery pack which powers the vehicle. Two other components are pod assemblies, which each include at least one motor and one propeller. Each motor is supported within a support ring using spokes or filament. The spokes keep the motor firmly stable during operation and also effectively encage the otherwise dangerous spinning propeller. This allows the vehicle to operate with a higher level of safety than conventional UAVs. The breakaway feature can be established using magnets.
Abstract:
This invention relates to an Unmanned Aerial Vehicle hereinafter called “Mother UAV” member (11) capable of carrying modules of Sub Unmanned Aerial Vehicle members (12) hereinafter called “Sub UAV” member. More particularly, the method and system that is capable of communicating via satellite and remote control technology wherein ejecting said Sub UAV members (12) from the Mother UAV member (11) wherein Sub UAV members (12) autonomously fly in sequence in a coordinated manner with the Mother UAV member (11), and capable of engaging in multiple missions in high, medium, low altitude, and surface, also communication with under sea submarines (27). Further, comprises of a method and system that the Sub UAV members (12) are able to return back to the Mother UAV member (11) after the mission is completed and be firmly secured to the flatbed (14) of the Mother UAV member (11). The present invention is specifically designed for multifunctional and multipurpose applications where humans and other vehicles are unable to access, for civil, commercial and military purposes.
Abstract:
Systems, methods, and devices for propelling self-propelled movable objects are provided. In one aspect, a rotor assembly for a self-propelled movable object comprises: a hub comprising a first fastening feature; a drive shaft comprising a second fastening feature and directly coupled to the hub by a mating connection of the first and second fastening features, wherein the drive shaft is configured to cause rotation of the hub such that the mating connection of the first and second fastening features is tightened by the rotation; and a plurality of rotor blades coupled to the hub and configured to rotate therewith to generate a propulsive force.
Abstract:
Disclosed are an unmanned aerial vehicle, a charging station, and an automatic charging system for an unmanned aerial vehicle including the same. The unmanned aerial vehicle includes: a main body which includes a plurality of rotors, and is capable of flying and vertical taking off and landing by the rotors; a battery which is mounted in the main body for supplying power and is chargeable; a landing gear which includes a first charging terminal and a second charging terminal having different polarities and electrically connected to the battery, and is provided at a lower part of the main body; and a controller configured to control the main body.
Abstract:
The drone comprises: a vertical-view camera (132) pointing downward to pick up images of a scene of the ground overflown by the drone; gyrometer, magnetometer and accelerometer sensors (176); and an altimeter (174). Navigation means determine position coordinates (X, Y, Z) of the drone in an absolute coordinate system linked to the ground. These means are autonomous, operating without reception of external signals. They include image analysis means, adapted to derive a position signal from an analysis of known predetermined patterns (210), present in the scene picked up by the camera, and they implement a predictive-filter estimator (172) incorporating a representation of a dynamic model of the drone, with as an input the position signal, a horizontal speed signal, linear and rotational acceleration signals, and an altitude signal.