Abstract:
A sonar buoy includes a fuselage having a tube-like shape, one or more wings coupled to the fuselage, an engine coupled to the fuselage and operable to propel the sonar buoy through flight, and a guidance computer operable to direct the sonar buoy to a predetermined location. The sonar buoy further includes a sonar detachably coupled to the fuselage and forming at least a part of the fuselage, and a rocket motor detachably coupled to the fuselage. The one or more wings are operable to be folded into a position to allow the sonar buoy to be disposed within a launch tube coupled to a vehicle and to automatically deploy to an appropriate position for flight after the sonar buoy is launched from the launch tube. The rocket motor propels the sonar buoy from the launch tube and detaches from the fuselage after launch.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust-vectoring (“T/V”) module and a second T/V module, and an electronics module. The electronics module provides commands to the two T/V modules. The two T/V modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as T/V modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
A lightweight, man-portable weapon delivery system includes a fuselage, and first and second wings mounted to opposing sides of the fuselage. The system includes an electric motor for driving a propeller for providing thrust to propel the system. The electric motor is mounted to the fuselage, and configured to be remotely started by a user. The system includes an imaging device mounted to the system and configured to capture images of a theater of operations of the system. The system includes a communication circuit in communication with the imaging device and configured to transmit the images from the imaging device to the user for viewing the theater of operations of the system for remotely steering the system. The communication circuit is configured to receive commands from the user for steering the system into the target. The system includes a payload configured to store the ordnance.
Abstract:
Methods and systems are provided which may allow a first vehicle to recover a second air vehicle while both are moving. The first vehicle and the second air vehicle may be traveling at different velocities. An attachment member of the second air vehicle may attach to a recovery member of the first vehicle while the first vehicle and the second air vehicle are traveling at different velocities. The recovery member attached to the second air vehicle may move relative to and along an exterior surface of the first vehicle in a direction substantially parallel to a direction of travel of the first vehicle.
Abstract:
Vibration isolation devices and associated systems and methods are disclosed herein. In one embodiment, for example, an unmanned aircraft can include a fuselage having a first fuselage section and a second fuselage section adjacent to and at least approximately longitudinally aligned with the first fuselage section. The aircraft can also include at least one vibration isolation device coupling the first fuselage section to the second fuselage section. The vibration isolation device is translationally stiffer along a longitudinal axis than it is along a lateral and a vertical axis, and rotationally stiffer about a pitch and a yaw axis than it is about a roll axis.
Abstract:
Provided are alternative hybrid transmission systems for marine, or two wheeled land vehicles, as well as propulsion systems and vehicles comprising such transmission systems, to improve various propulsion systems using a combination of at least two power sources with the option for simultaneous or alternating power input from two or more power sources, while providing desired characteristics or components. Such characteristics or components can include, but are not limited to: power, torque, acceleration, cruising speed or power, fuel efficiency, battery charging, endurance, power sizing, weight, capacity, efficiency, speed, mechanically and/or electrically added system requirements, design, fuel selection, functional design, structural design, lift to drag ratio, weight, and/or other desired characteristic or component.
Abstract:
The present invention relates to an unmanned air vehicle (105), comprising a body having front (121) and rear (122) sections with at least one pair of end plates (110) connected to said body, wherein one end plate within said at least one pair of end plates is connected to the left side of said body and another end plate within said at least one pair of end plates is connected to the right side of said body, each end plate having upper and lower sections (111,112), wherein: a) said upper section is positioned above a mean line of said body; b) said lower section is positioned below said mean line of said body; and c) a ratio of the area of said upper section to the area of said lower section is less than 1.
Abstract:
A solar powered air vehicle that can stay aloft for indefinite periods of time. The vehicle employs photovoltaic solar cells for primary power and high speed counter-rotating flywheels for energy storage and steering of the vehicle. The flywheels are placed in the wing to reduce airfoil drag. A control law provides three-axis stabilized control of the vehicle by controlling propeller pitch to vary the speeds of the flywheels.
Abstract:
Systems and/or methods for forming a multiple-articulated flying system (skybase) having a high aspect ratio wing platform, operable to loiter over an area of interest at a high altitude are provided. In certain exemplary embodiments, autonomous modular flyers join together in a wingtip-to-wingtip manner. Such modular flyers may derive their power from insolation. The autonomous flyers may include sensors which operate individually, or collectively after a skybase is formed. The skybase preferably may be aggregated, disaggregated, and/or re-aggregated as called for by the prevailing conditions. Thus, it may be possible to provide a “forever-on-station” aircraft.
Abstract:
A vertical take-off and landing (VTOL) flying-wing aircraft has a pair of thrust-vectoring propulsion units (2, 3; 4, 5) mounted fore and aft of the aircraft pitch axis (PA) on strakes (6, 7) at opposite extremities of the wing-structure (1), with the fore unit (2; 4) below, and the aft unit (3; 5) above, the wing-structure (1). The propulsion units (2-5) are pivoted to the strakes (6, 7), either directly or via arms (56), for individual angular displacement for thrust-vectored maneuvering of the aircraft in yaw, pitch and roll and for hover and forward and backward flight. When arms (56) are employed, the arms (56) of fore and aft propulsion units (52,54; 53,55) are intercoupled via chain drives (57-60) or linkages (61). The wing-structure (1; 51 ; 78) may have fins (47;84), slats (81) and flaps (82) and other aerodynamic control-surfaces, and enlarged strakes (84) may incorporate rudder surfaces (80). Only one propulsion unit (21) may be mounted at each extremity and additional fan units (48,83) may be used.