Abstract:
A MEMS device that suppresses variations in a resistance value caused by contracting vibrations in a direction in which a holding portion extends. The MEMS device includes a frame, a rectangular plate that receives an input of a driving signal, and holding portions that anchor the rectangular plate to the frame. The frame and the rectangular plate are both rectangular in shape. The holding portions are provided extending toward the frame from central areas of the opposing sides of the rectangular plate, and anchor the rectangular plate to the frame. A resistive film is formed in a region that follows a straight line connecting the holding portions that anchor the rectangular plate to the frame and that corresponds to no more than half a maximum displacement from a vibration distribution.
Abstract:
Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
Abstract:
Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
Abstract:
A MEMS device includes a semiconductor substrate having a main surface with a first region in which a trench is formed and a second region in which an impurity diffusion region of a semiconductor circuit element is formed; a functional element provided, either directly or via an insulating film, on a bottom surface of the trench of the semiconductor substrate; a wall portion in the trench of the semiconductor substrate and forming a cavity surrounding the functional element; a lid portion that covers the cavity; and a pillar in the cavity and in contact with either the bottom surface of the trench of the semiconductor substrate or the insulating film, and with a back surface of the lid portion.
Abstract:
A method for fabricating an environmentally robust micro-wineglass gyroscope includes the steps of stacking and bonding of at least an inner glass layer and an outer glass layer to a substrate wafer; plastically deforming the inner glass layer into a mushroom-shaped structure and deforming the outer glass layer into a shield capable of extending over the inner glass layer, while leaving the inner and outer glass layers connectable at a central post location; removing the substrate layer and a portion of the inner glass layer so that a perimeter of the inner glass layer is free; and bonding the deformed inner and outer glass layers to a handle wafer. The resulting structure is an environmentally robust micro-wineglass gyroscope which has a double ended supported central post location for the mushroom-shaped structure of the inner glass layer.
Abstract:
A present MEMS device includes: a structural member that is provided on a surface of a substrate and forms a cavity surrounding a functional element; a first layer in which an opening is formed in a predetermined position, the first layer covering a part of the cavity in such a manner that a gap is present between the first layer and the functional element; a second layer in which an opening is formed in a position corresponding to the predetermined position, the second layer being provided on a surface of the first layer; and a sealing portion that is provided on a surface of the second layer across a range broader than the opening of the first layer and the opening of the second layer, and seals at least the opening of the second layer.
Abstract:
A multiple coil spring MEMS resonator includes a center anchor and a resonator body including two or more coil springs extending in a spiral pattern from the center anchor to an outer closed ring. Each pair of coil springs originates from opposing points on the center anchor and extends in the spiral pattern to opposing points on the outer ring. The number of coil springs, the length and the width of the coil springs and the weight of the outer ring are selected to realize a desired resonant frequency
Abstract:
A method for forming through silicon vias (TSVs) in a silicon substrate is disclosed. The method involves forming a silicon post as an annulus in a first side of a silicon substrate, removing material from an opposite side to the level of the annulus, removing the silicon post and replacing it with a metal material to form a metal via extending through the thickness of the substrate.
Abstract:
A method and system for a MEMS device is disclosed. The MEMS device includes a free layer, with a first portion and a second portion. The MEMS device also includes a underlying substrate, the free layer movably positioned relative to the underlying substrate. The first portion and second portion of the free layer are coupled through at least one stem. A sense material is disposed over portions of the second portion of the free layer. Stress in the sense material and second portion of the free layer does not cause substantial deflection of the first portion.