Abstract:
Hydrophobically modified Si-containing polyamines are useful for treating scale in industrial process streams. Preferred hydrophobically modified Si-containing polyamines are particularly useful for treating aluminosilicate scale in difficult-to-treat industrial process streams, such as in the Bayer alumina process streams, nuclear waste streams and kraft paper mill effluent streams.
Abstract:
A resin-soluble thermoplastic polymer veil toughening element for a curable composition wherein the polymer element is a non-woven veil in solid phase adapted to undergo at least partial phase transition to fluid phase on contact with a component of the curable resin matrix composition in which it is soluble at a temperature which is less than the temperature for substantial onset of gelling and/or curing of the curable composition and which temperature is less than the polymer elements melt temperature; a method for the preparation thereof, a preform support structure for a curable composition comprising the at least one thermoplastic veil element together with structural reinforcement fibers, methods for preparation thereof, a curable composition comprising the at least one thermoplastic veil element or the support structure and a curable resin matrix composition, a method for preparation and curing thereof, and a cured composite or resin body obtained thereby, and known and novel uses thereof.
Abstract:
Disclosed herein is a method for utilizing the exothermic energy generated by a low temperature cure reaction to access a high-temperature cure reaction, which is otherwise energetically inaccessible at a chosen tool temperature, thereby producing a cured resin matrix with properties closely matching to those produced via high-temperature cure reactions but achieved via a short cure time and low cure temperature. Also disclosed is a short-cure resin composition containing: (a) at least one multifunctional epoxy resin having an epoxy functionality of greater than 1; (b) a hardener composition containing (i) at least one aliphatic or cycloaliphatic amine curing agent having one or more amino groups per molecule; (ii) at least one aromatic amine curing agent having one or more amino groups per molecule; and optionally, (iii) an imidazole as curing accelerator. The improved properties of this resin composition include being curable at a temperature of ≦120° C. for a time period of less than 10 minutes to achieve a degree of cure higher than that derived from the same composition with just (i) aliphatic/cycloaliphatic amine or (ii) aromatic amine in isolation.
Abstract:
A structural adhesive composition that is suitable for high-strength bonding of metals and aerospace structural materials. In one embodiment, the structural adhesive composition based on a two-part system, which is curable at or below 200° F. (93° C.). The two-part system is composed of a resinous part (A) and a catalyst part (B), which may be stored separately at room temperature until they are ready to be used. The resinous part (A) includes at least two different multifunctional epoxy resins with different functionality selected from difunctional, trifunctional, and tetrafunctional epoxy resins, certain toughening components, and inorganic filler particles as a rheology/thixotrophy modifying component. The toughening components include core-shell rubber particles with different particle sizes and at least one of an elastomeric polymer and a polyethersulfone polymer. The catalyst part (B) includes an aliphatic or cyclic amine compound as a curing agent and inorganic filler as a rheology/thixotropy modifying component. The weight ratio of part (A) to part (B) is within the range of 3:2 to 10:2. In another embodiment, the structural adhesive composition is based on a one-part system which includes the components of the resinous part (A) in the two-part system mixed with a latent amine curing agent. The one-part system may further include an imidazole and/or an aliphatic amine. The one-part system is curable within the temperature range of 140-300° F. (60-150° C.). The paste adhesive disclosed herein has film-like properties and is particularly useful in rapid-assembly aerospace structure bonding applications.
Abstract:
A structural adhesive composition that is suitable for high-strength bonding of metals and aerospace structural materials. In one embodiment, the structural adhesive composition based on a two-part system, which is curable at or below 200° F. (93° C.). The two-part system is composed of a resinous part (A) and a catalyst part (B), which may be stored separately at room temperature until they are ready to be used. The resinous part (A) includes at least two different multifunctional epoxy resins, toughening components, and inorganic filler particles. The catalyst part (B) includes an aliphatic or cyclic amine compound as a curing agent and inorganic filler. In another embodiment, the structural adhesive composition is based on a one-part system, which includes the components of the resinous part (A) mixed with a latent amine curing agent. The one-part system may further include an imidazole and/or an aliphatic amine.
Abstract:
A process for the production of a composition comprising one or more conductive nano-filler(s), one or more polyarylethersulphone thermoplastic polymer(s) (A), one or more uncured thermoset resin precursor(s) (P), and optionally one or more curing agent(s) therefor, wherein said process comprises mixing or dispersing a first composition comprising one or more conductive nano-filler(s) and one or more polyarylethersulphone thermoplastic polymer(s) (A) with or into one or more uncured thermoset resin precursor(s) (P), and optionally one or more curing agent(s) therefor.
Abstract:
A process for manufacturing a composite article, which include combining a nonwoven mat of extruded fibers with one or more layers of fabrics to form a preform, and injecting the preform with a liquid thermosetting resin. The extruded fibers are formed by combining and extruding a thermoplastic carrier material with a toughening material within a predetermined temperature range. The carrier material is immiscible with the toughening material, and the toughening material is encapsulated within the carrier material. The carrier material is at least partially soluble in the thermosetting resin within a predetermined temperature range, and the toughening material is insoluble in the thermosetting resin during a cure cycle. A preform having at least one nonwoven mat of extruded fibers is also disclosed.
Abstract:
A structural adhesive composition that is suitable for high-strength bonding of metals and aerospace structural materials. In one embodiment, the structural adhesive composition based on a two-part system, which is curable at or below 200° F. (93° C.). The two-part system is composed of a resinous part (A) and a catalyst part (B), which may be stored separately at room temperature until they are ready to be used. The resinous part (A) includes at least two different multifunctional epoxy resins, toughening components, and inorganic filler particles. The catalyst part (B) includes an aliphatic or cyclic amine compound as a curing agent and inorganic filler. In another embodiment, the structural adhesive composition is based on a one-part system, which includes the components of the resinous part (A) mixed with a latent amine curing agent. The one-part system may further include an imidazole and/or an aliphatic amine.
Abstract:
Embodiments of the present disclosure present electrically conductive, thermosetting compositions for use in surfacing films and adhesives. The surfacing films possess enhanced electrical conductivity, comparable to metals, without the use of embedded metal screens or foils. Such surfacing films may be incorporated into composite structures (e.g., prepregs, tapes, and fabrics), for example, by co-curing, as an outermost surface layer. In particular, compositions formed using silver flakes as conductive fillers are found to exhibit very high electrical conductivity. For example, compositions including greater than 45 wt. % silver flake exhibit resistivities less than about 55 mΩ/sq. In this manner, the surfacing films as an outermost conductive layer may provide lighting strike protection (LSP) and electromagnetic interference (EMI) shielding when used in applications such as aircraft components.
Abstract:
A stabilizer composition for producing a polymeric hollow article in a rotomolding process has stabilizing amounts of: (i) at least one chroman-based compound according to Formula (V): wherein at least one instance of R21 is OR27, R27 is COR′″ or Si(R28)3, and R′″, R22, R23 R24, R25 and R26 are as defined herein; (ii) at least one phosphite or phosphonite; and (iii) a basic co-additive selected from alkali metal or alkaline metal salts of higher fatty acids. A polymeric hollow article is made by a process comprising: a) filling a mold with a polyolefin and a stabilizing amount of the stabilizer composition described herewith; b) rotating the mold around at least one axis while heating the mold in an oven, thereby fusing the composition and spreading it to the walls of the mold; c) cooling the mold; and d) opening the mold to remove the resulting polymeric hollow article.