Abstract:
An improved starting system for internal combustion engines that normally use a liquid fuel such as gasoline. Gaseous fuels such as hydrogen, natural gas, propane, butane and the like are used in place of the liquid fuel during engine starting and for a selected period thereafter. When starting is initiated, the gasoline introduction system is disabled and introduction of the gaseous fuel in initiated. Rapid engine start promptly occurs, even under very cold ambient conditions. Once the engine has started and has run for a period sufficient to reach a reasonable operating temperature, the gaseous fuel introduction system is interrupted and the gasoline system is enabled and provides the fuel thereafter. If desired, gaseous fuel flow may continue for a short period after liquid fuel flow has begun. This system improves the life of the catalytic converter and the engine, reduces hydrocarbon and carbon monoxide emissions during starting and eliminates the need for special, higher cost, gasoline mixes for winter cold starting.
Abstract:
An intake and exhaust system for use with internal combustion engines that uses two intake valves and one exhaust valve for each engine cylinder. The three valves are preferably round and spaced around the cylinder centerline in the cylinder head. The two intake valves may be spaced closer to the exhaust valve than to each other. The two intake valves may, alternatively, be spaced closer to each other than to the exhaust valve and two spark plugs may be provided, each lying between an intake valve and the exhaust valve. For best results, the two intake valves have substantially equal diameters, with the diameter of the exhaust valve having a ratio to the diameter of an intake valve of from about 1:1 to about 1:1.2. The head has three substantially hemispheric depressions each housing one of said valves. Squish areas are preferably provided between each pair of adjacent valves around the combustion chamber periphery. This invention provides a fast and uniform lean burn, permits use of a high compression ratio and lower octane, unleaded gasoline and provides improved thermal efficiency.
Abstract:
A combination intake air filter for an internal combustion engine and oil collection system for oil in crankcase breather fumes. An enclosed canister having a tubular side wall and two end walls houses a filter element, typically hollow frustum-shaped. A plurality of entrance openings around the periphery of one end wall admit intake air into the canister on one side of the filter element while a central exit opening in the opposite end wall directs the air to the engine after passing through the filter. The entrance openings are sized to create a predetermined pressure drop across the entrance. An inner wall spaced from the sidewall forms and annular space therebetween. An inlet at the top admits breather fumes into the annulus, with a barrier wall between the inner wall and sidewall forces the fumes to travel around the canister through the annulus to an exit connecting the annulus to the canister interior. A condensed oil exit removes oil condensed in the cool annulus and oil droplets forced into contact with the side wall by centrifugal forces. A small portion of the oil does not condense and serves to lightly wet the filter element to improve filter entrapment of very fine particles.
Abstract:
A combustion chamber arrangement for use with internal combustion engines having a piston in an engine block cylinder and a cylinder head secured to the block with a combustion chamber adjacent to the piston surface. One intake valve, one smaller exhaust valve and one centrally located fuel ignition device located in a cylinder head recess are provided for each engine cylinder. The two valves are preferably circular and located on opposite sides of the central ignition device, substantially on a line running through the ignition device. For best results the ratio of the diameter of the intake valve to the diameter of the exhaust valve is at least about 1:3, preferably from about 1.3 to 1.4. Substantially symmetrical squish pads are provided in the cylinder head chamber on adjacent to the row of exhaust valve, ignition device and intake valve. The piston forming the side of the combustion chamber opposite the cylinder head recess preferably has a substantially flat surface with, if desired, a shallow recess which is the mirror image of the recess between the squish pads in the head. This system provides a fast and uniform lean burn, permits use of a high compression ratio and lower octane, unleaded gasoline or other fuels and provides improved thermal efficiency.
Abstract:
The disclosure is directed to an improved aerodynamic helmet. The helmet has a continuous aerodynamic curvilinear front, side and top surfaces whereby the fluid flowing over and around the sides of the helmet flows in a substantially continuous flow direction from the forward curved area aft of a straight area at the greatest width or largest transverse dimensions of the helmet after leaving the surface influence thereof. The continuous transverse surface around the outer periphery of the helmet at or slightly aft of the greatest width area is provided with a fluid flow termination surface or trailing edge causing the normal direction of the fluid flow around the helmet to break loose from the surface of the helmet and continue in substantially the same direction after passing the termination or trailing edge thereby preventing turbulence to the flow rather than allowing the fluid flow to follow the surface and flow around a portion of the smaller dimension back surface of the helmet before separating therefrom which creates turbulence behind the helmet and unwanted lift thereto. The improved helmet lowers wind drag compared to conventional helmet by about 40%.
Abstract:
An intake manifold for twin carburetors or twin air control throat bodies for a motorcycle or the like having one or more cylinders where the physical space is limited comprising a hollow central plenum chamber and hollow carburetor or air control throat body mounting flanges on each opposing side adjacently perpendicular to at least one side communicating with the intake track of at least one cylinder. In the case of two opposing cylinders, each cylinder communicates with the hollow central plenum chamber through opposing openings and the perpendicularly mounted carburetors or air control bodies. When a cylinder intakes a fuel mixture from the carburetors the fuel mixtures from each carburetor converge in the hollow plenum chamber where the direction of flow is turned toward the cylinder without physical impact with a physical structure during direction change. With the cause of air control throat bodies the air flowing through the manifold controls the flow of the air in the same manner as the fuel mixture.
Abstract:
The invention is directed to an improved curved intake duct through which fluid flows. The curved intake duct includes a fairing positioned upstream and adjacent to the valve stem which extends through the duct, a fairing downstream of the valve stem and adjacent thereto and a duct floor portion on the inside of the duct at the radius of curvature of the duct. The floor portion of the duct includes a flat section. The curvature including the flat section of the floor portion is decreasing radius energy curve with a height Y at a distance X which follows the following equation, where Y=the longitudinal contour of the surface area at a distance X from X=0 to X=5.1, Y=f(x)=7.42 .multidot.10.sup.-7 X.sup.4 -1.42.multidot.10.sup.-4 X.sup.3 +1.36.multidot.10.sup.-2 X.sup.2 -2.20.multidot.10.sup.-2 X-3.56 .multidot.10.sup.-3. The fairings and the floor portion can be used separately or in any combination thereof. The improvement provided by each separate element is additive. The use of all elements provides maximum efficiency to fluid flow through the duct.
Abstract:
The invention is directed to an improved curved intake duct through which fluid flows. The curved intake duct includes a fairing positioned upstream and adjacent to a valve stem which extends through the duct, a fairing downstream of the valve stem and adjacent thereto and a duct floor portion on the inside of the duct at the radius of curvature of the duct. The floor portion of the duct includes a flat section. The curvature including the flat section of the floor portion is a decreasing radius energy curve with a height Y at a distance X which follows the following equation, where Y=the longitudinal contour of the surface area at a distance according to the equation: f(x)=7.42.times.10.sup.-7 X.sup.4 -1.42.times.10.sup.-4 X.sup.3 +1.36.times.10.sup.-2 X.sup.2 -2.20.times.10.sup.-2 X-3.56.times.10.sup.-3 between X=0 and X=85.1. The fairings and the floor portion can be used separately or in any combination thereof. The improvement provided by each separate element is additive. The use of all elements provides maximum efficiency to fluid flow through the duct.