Abstract:
Provided is a biochemical analyzer in which a microfluidic biochemical assay may be performed. The analyzer includes: a microfluidic device loading space including a microfluidic device supporting unit detachably supporting a microfluidic device including an energy application region in which an energy is applied; an energy source loading space including an energy source applying the energy to the radiation application region; and an isolation wall isolating the microfluidic device loading space and the energy source loading space to prevent heat transfer between the microfluidic device loading space and the energy source loading space and including a window through which the energy can be transmitted. A method of controlling an internal temperature of the biochemical analyzer is also provided.
Abstract:
Provided is a quantitative cell dispensing apparatus using liquid droplet manipulation, for quantitatively dispensing cells from hydrophilic suspension containing a plurality of cells. The quantitative cell dispensing apparatus includes hydrophilic suspension, a liquid droplet manipulation unit, a dispensing unit, a sensing unit, and a control unit. The hydrophilic suspension includes a plurality of cells and electrolyte, and the liquid droplet manipulation unit. The liquid droplet manipulation unit includes an inlet and a liquid droplet outlet portion. The dispensing unit discharges a liquid droplet received from the liquid droplet outlet portion to a target portion. The sensing unit optically senses liquid droplets distributed on a panel of the liquid droplet manipulation unit. The control unit analyses the number of cells contained in each liquid droplet using a single sensed by the sensing unit, and controls the liquid droplet manipulation unit to transfer a liquid droplet containing a predetermined number of cells to the liquid droplet outlet portion.
Abstract:
An apparatus for disruption of cells or viruses using a laser and magnetic beads includes a cell lysis chip including a sample inlet hole into which a sample and the magnetic beads are introduced, a vibrator fixing the cell lysis chip and transferring vibrations in a prescribed direction, a laser generator supplying the laser to the cell lysis chip and a controller controlling operations of the vibrator and the laser generator.
Abstract:
Disclosed is an apparatus and method for ejecting droplets using charge concentration and liquid bridge breakup. The droplet ejection apparatus includes a reservoir storing a liquid; a capillary nozzle having a lower end submerged in the liquid stored in the reservoir and an upper end exposed outside the surface of the liquid, the capillary nozzle transferring the liquid to the upper end using capillary force; a potentiostat for applying a voltage to the liquid; a substrate mount on which a substrate is disposed to face the upper end of the capillary nozzle; and a distance adjusting unit for reciprocatingly moving the substrate between first and second positions with respect to the capillary nozzle, wherein the first position denotes a position where a distance between the upper end of the capillary nozzle and the surface of the substrate is less than a effective distance.
Abstract:
Disclosed is an apparatus and method for ejecting droplets using charge concentration and liquid bridge breakup. The droplet ejection apparatus includes a reservoir storing a liquid; a capillary nozzle having a lower end submerged in the liquid stored in the reservoir and an upper end exposed outside the surface of the liquid, the capillary nozzle transferring the liquid to the upper end using capillary force; a potentiostat for applying a voltage to the liquid; a substrate mount on which a substrate is disposed to face the upper end of the capillary nozzle; and a distance adjusting unit for reciprocatingly moving the substrate between first and second positions with respect to the capillary nozzle, wherein the first position denotes a position where a distance between the upper end of the capillary nozzle and the surface of the substrate is less than a effective distance.
Abstract:
A droplet printing apparatus using capillary electric charge concentration includes a reservoir which contains a solution, a capillary nozzle comprising a back-end part and a front-end part disposed substantially opposite the back-end part, a target member spaced apart from the front-end part of the capillary nozzle at a predetermined distance, and a voltage supplier which supplies a voltage to the solution, wherein the back-end part is immersed in the solution and transmits the solution to the front-end part.
Abstract:
Provided are an optical detection apparatus, a microfluidic system including the same, and an optical detection method. The optical detection apparatus including: at least one light emission unit which emits light of a predetermined wavelength band; at least one light receiving unit which is disposed such that the light receiving unit receives the light emitted from the light emission unit and generates an electrical signal according to the intensity of the light received, wherein the number of light receiving units is the same as the number of light emission units; a rotation operating unit which rotates a disk-type microfluidic apparatus comprising at least one detection chamber in which a sample is to be loaded such that the detection chamber is disposed in a light pathway between the light emission unit and the light receiving unit; and a processor which measures a property of the sample contained in the detection chamber using the electrical signal generated by the light receiving unit.
Abstract:
Provided is a microfluidic apparatus including: a microfluidic structure for providing spaces for receiving a fluid and for forming channels, through which the fluid flows; and valves for controlling the flow of fluid through the channels in the microfluidic apparatus. The microfluidic structure includes: a sample chamber; a sample separation unit receiving the sample from the sample chamber and separating a supernatant from the sample by using a centrifugal force; a testing unit receiving the supernatant from the sample separation unit for detecting a specimen from the supernatant using an antigen-antibody reaction, and a quality control chamber for identifying reliability of the test.
Abstract:
Provided are an optical detection apparatus, a microfluidic system including the same, and an optical detection method. The optical detection apparatus including: at least one light emission unit which emits light of a predetermined wavelength band; at least one light receiving unit which is disposed such that the light receiving unit receives the light emitted from the light emission unit and generates an electrical signal according to the intensity of the light received, wherein the number of light receiving units is the same as the number of light emission units; a rotation operating unit which rotates a disk-type microfluidic apparatus comprising at least one detection chamber in which a sample is to be loaded such that the detection chamber is disposed in a light pathway between the light emission unit and the light receiving unit; and a processor which measures a property of the sample contained in the detection chamber using the electrical signal generated by the light receiving unit.
Abstract:
A microfluidic apparatus having a substrate including a channel through which a fluid is conveyed, a fluid container in which at least one kind of fluid is accommodated and which is disposed on the substrate so as to allow the fluid to flow toward the channel, and a fluid flow controller which controls a flow of the fluid toward the channel from the fluid container.