Abstract:
Methods and microfluidic devices for generating and manipulating sample droplets, wherein the devices comprise, a plurality of fluid channels, at least one of which is a sample channel for carrying a fluidic sample material, that is in fluid communication with the carrier fluid channel via an orifice; and an actuated flow interrupter adapted to force a predetermined amount of the sample fluid from the sample channel through the orifice into the carrier fluid channel.
Abstract:
A method of Raman detection for a portable, integrated spectrometer instrument includes directing Raman scattered photons by a sample to an avalanche photodiode (APD), the APD configured to generate an output signal responsive to the intensity of the Raman scattered photons incident thereon. The output signal of the APD is amplified and passed through a discriminator so as to reject at least one or more of amplifier noise and dark noise. A number of discrete output pulses within a set operational range of the discriminator is counted so as to determine a number of photons detected by the APD.
Abstract:
A gating voltage control system and method are provided for electrostatically actuating a micro-electromechanical systems (MEMS) device, e.g., a MEMS switch. The device may comprise an electrostatically responsive actuator movable through a gap for actuating the device to a respective actuating condition corresponding to one of a first actuating condition (e.g., a closed switching condition) and a second actuating condition (e.g., an open switching condition). The gating voltage control system may comprise a drive circuit electrically coupled to a gate terminal of the device to apply a gating voltage. The gating voltage control system may further comprise a controller electrically coupled to the drive circuit to control the gating voltage applied to the gating terminal in accordance with a gating voltage control sequence. The gating voltage control sequence may comprise a first interval for ramping up the gating voltage to a voltage level for producing an electrostatic force sufficient to accelerate the actuator through a portion of the gap to be traversed by the actuator to reach a respective actuating condition. The gating voltage control sequence may further comprise a second interval for ramping down the gating voltage to a level sufficient to reduce the electrostatic force acting on the movable actuator. This allows reducing the amount of force at which the actuator engages a contact for establishing the first actuating condition, or avoiding an overshoot position of the actuator while reaching the second actuating condition.
Abstract:
An interferometer includes a resonant cavity having a movable mirror and at least one fiber optic component acting as a fixed mirror. A surface of the fiber optic component is coated with a reflective film. An actuator is coupled to the movable mirror, such that when a scattered optical beam is coupled to the cavity, interference occurs between the surface of the fiber optic component coated with reflective film and a surface of the movable mirror facing the surface of the fiber optic component coated with reflective film. The reflective film on the surface of the fiber optic component causes closely spaced spectral lines within the scattered optical beam to be suitably resolved.
Abstract:
Disclosed herein is a plasmonics platform comprising a substrate; a plurality of periodically spaced nanoholes and/or nanoparticles disposed upon the substrate; wherein the average first order of periodicity between the nanoholes and/or the nanoparticles is about 5 to about 1,000 nm; and a microelectromechanical and/or a nanoelectromechanical system in operative communication with the substrate so as to vary the average first order of periodicity between the nanoholes and/or the nanoparticles.
Abstract:
A photonic crystal based collection probe is provided. The probe includes a photonic crystal configured to guide and condition a beam of Raman scattered photons. Further, the device includes a spectrograph in optical communication with the photonic crystal and configured to receive Raman scattering from the photonic crystal. The device may be employed in a Raman spectrometer system.
Abstract:
An integrated spectrometer instrument, including an optical source formed on a chip, the optical source configured to generate an incident optical beam upon a sample to be measured. Collection optics formed on the chip are configured to receive a scattered optical beam from the sample, and filtering optics formed on the chip are configured to remove elastically scattered light from the scattered optical beam at a wavelength corresponding to the optical source. A tunable filter formed on the chip is configured to pass selected wavelengths of the scattered optical beam, and a photo detector device formed on the chip is configured to generate an output signal corresponding to the intensity of photons passed through the tunable filter.
Abstract:
A photonic crystal based collection probe is provided. The probe includes a photonic crystal configured to guide and condition a beam of Raman scattered photons. Further, the device includes a spectrograph in optical communication with the photonic crystal and configured to receive Raman scattering from the photonic crystal. The device may be employed in a Raman spectrometer system.