Abstract:
Provided herein are rodents that express the human endosialin gene. In preferred embodiments, the rodent is a mouse. Preferably, the human endosialin gene is integrated into the native or endogenous endosialin gene locus. More preferably, the host rodent is null for the endogenous endosialin gene product. The human endosialin gene is preferably expressed in a similar development and disease response pattern as that of the native endosialin gene product in parental or wild type rodents. This feature makes these rodents useful for studying the effects of test agents to positively or negatively affect endosialin biology for therapeutic use. Use of human endosialin expressing rodents lacking native endosialin gene product (HUE rodents) is proposed as a strategy for developing agents that can positively or negatively affect the endosialin pathway and also serve as a screening tool to identify those agents that may be useful as human therapies.
Abstract:
A capacitor and a circuit board having the same are provided. The capacitor includes a substrate, an oxide layer, a second electrode, an insulating layer, a plurality of conductive sheets and a plurality of vias. The substrate includes a first electrode and a porous structure. The porous structure in at least of two distribution regions has different depths. An oxide layer is disposed on the surface of the porous structure. The second electrode is disposed on the oxide layer and includes a conductive polymer material. The insulating layer disposed on the second electrode has a third and a fourth surfaces. The fourth surface of the insulating layer is connected with the second electrode. The conductive sheets are disposed on the first surface of the first electrode and the third surface of the insulating layer and electrically connected with the corresponding vias according to different polarities.
Abstract:
A package comprises a die stack having at least two stacked dies coupled for contactless communications with each other. At least one of the stacked dies has a substrate joined to its major face. The substrate has a plurality of conductive traces in or on the substrate for conducting power to the dies and for conducting heat from the dies. At least one conductive pillar is joined to at least one of the conductive traces on at least a first edge of the substrate, for conducting power to the at least one die and for conducting heat from the at least one die.
Abstract:
A first substrate and a second substrate are provided. An alignment process is performed on a surface of the first substrate and a surface of the second substrate respectively. A liquid crystal mixture is prepared, where the liquid crystal mixture includes a liquid crystal molecule and a liquid crystal monomer having a functional group of diacrylates, and the liquid crystal monomer having the functional group of diacrylates occupies 0.01-2 wt % of the liquid crystal mixture. The first substrate and the second substrate are assembled, and the liquid crystal mixture is filled therebetween. A polymerization curing process is performed such that the liquid crystal monomer having the functional group of diacrylates is polymerized to respectively form a liquid crystal polymer film on the aligned surfaces of the first and second substrates. The method enhances anchoring energy and reduces problems of V-T shift, surface gliding, and residual image.
Abstract:
A package comprises a die stack having at least two stacked dies coupled for contactless communications with each other. At least one of the stacked dies has a substrate joined to its major face. The substrate has a plurality of conductive traces in or on the substrate for conducting power to the dies and for conducting heat from the dies. At least one conductive pillar is joined to at least one of the conductive traces on at least a first edge of the substrate, for conducting power to the at least one die and for conducting heat from the at least one die.
Abstract:
A high-definition multimedia interface (HDMI) data transceiving apparatus is disclosed. The HDMI data transceiving apparatus includes a data receiver and a data transmitter. The data transmitter includes a first impedance-providing device and a second impedance-providing device. The data transmitter has a first data transmission terminal and a second data transmission terminal. The first data transmission terminal and the second data transmission terminal are coupled to the data receiver through a first transmission line and a second transmission line, respectively. The data transmitter respectively transmits first data and second data to the data receiver. The first impedance-providing device and the second impedance-providing device absorb a reflected wave generated by the HDMI data transceiving apparatus when the first data and the second data are transmitted.
Abstract:
A composite drill bit with a bit body configured at its upper extend for connection into a drillstring, comprising: a bit body (1) with at least one bit leg (3), at least one scraping-wheel (2) set with a cutter-row (4), and a set of cutters fixed thereon. The scraping-wheel (2) is mounted for rotation on the corresponding bit leg (3) with a large angular deflection α in the range of 20°≦|α|≦90°. The cutters on the scraping-wheel break rock by means of successive scraping, forming a cross-cutting area on the bottomhole accompanied by the cutters on the fixed cutting unit, thus achieving high rock-breaking efficiency, even wear, high cooling performance, and a longer service life for the cutters, bearings and the drill bit.
Abstract:
A mounting apparatus for mounting a number of data storage devices includes a supporting member, a connecting plate, and a number of partitioning members perpendicularly connected between the supporting member and the connecting plate. Each data storage device is sandwiched between two neighboring partitioning members. The supporting member defines a number of first latching holes. The connecting plate defines a number of second latching holes. Each partitioning member includes a partitioning plate, a first hook extending from a first end of the partitioning member, and a second hook extending out from a second end of the partitioning member. The first hook is detachably latched in the corresponding first latching hole. The second hook is detachably latched in the corresponding second latching hole.
Abstract:
A semiconductor device and an assembling method thereof are provided. The semiconductor device includes a chip, a carrier, a plurality of first conductive elements and a plurality of second conductive elements. The chip has a plurality of first pads. The carrier has a plurality of second pads. The second pads correspond to the first pads. Each first conductive element is disposed between one of the first pads and one of the second pads. Each second conductive element is disposed between one of the first pads and one of the second pads. A volume ratio of intermetallic compound of the second conductive elements is greater than a volume ratio of intermetallic compound of the first conductive elements.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region thereon; forming a high-k dielectric layer, a barrier layer, and a first metal layer on the substrate; removing the first metal layer of the second region; forming a polysilicon layer to cover the first metal layer of the first region and the barrier layer of the second region; patterning the polysilicon layer, the first metal layer, the barrier layer, and the high-k dielectric layer to form a first gate structure and a second gate structure in the first region and the second region; and forming a source/drain in the substrate adjacent to two sides of the first gate structure and the second gate structure.